Fluorescent beads are often used as a tool for visualizing fibrin fibers in single fiber mechanics studies and studies of single fiber lysis. Here we investigate the effect of beads on fibrin fiber lysis and extensibility to enhance understanding of this common research technique. We selected beads of the same diameter as those used in previous studies, as well as, beads of similar size to microparticles in the bloodstream. We used fluorescence microscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM) to quantify changes in fiber lysis, fiber extensibility, and clot structure in the presence and absence of beads. Fibrin clot structure and lysis were altered in the presence of beads. Fibrin clots formed with beads had a higher fiber density, smaller diameter fibers, and smaller pores. The rate of lysis for clots was reduced when beads were present. Lysis studies of bead-labeled individual fibers showed that beads, at concentrations similar to those reported for microparticles in the blood, cause a subset of fibers to resist lysis. In the absence of beads, all fibers lyse. These results demonstrate that beads alter fiber lysis through both a change in fibrin clot structure as well as changes to individual fiber lysis behavior. Additionally, the lysis of clots with beads produced large fibrin aggregates. This data encourages researchers to use careful consideration when labeling fibrin fibers with fluorescent beads and suggests that particles binding fibrin(ogen) in the bloodstream may be an underappreciated mechanism increasing the risk of thrombosis.
Background Fluorescent beads are often used as a tool for visualizing fibrin fibers and can mimic the size of microparticles in the blood. Studies showed microparticles alter the appearance and behavior of whole blood clot systems. Objectives Here we investigate the effect of beads on fibrin fiber lysis and extensibility to enhance understanding of this common research technique and as a biomimetic system for fibrin-microparticle interaction. Methods We used fluorescence microscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM) to quantify changes in lysis, extensibility, and clot structure of fibrin fibers and clots in the presence and absence of beads. Results and Conclusions Fibrin clot structure and lysis were altered in the presence of beads. Fibrin clots formed with beads had a higher fiber density, smaller fibers, and smaller pores. The rate of lysis for clots was reduced when beads were present. Lysis of bead-labeled individual fibers showed that beads, at concentrations similar to those reported for microparticles in the blood, cause a subset of fibers to resist lysis. In the absence of beads, all fibers lyse. These results demonstrate that beads alter fiber lysis through both a change in fibrin clot structure as well as changes to individual fiber lysis behavior. Additionally, the lysis of clots with beads produced large fibrin aggregates. This data encourages researchers to use careful consideration when labeling fibrin fibers with fluorescent beads and suggests that particles binding fibrin(ogen) in the bloodstream may be an underappreciated mechanism increasing the risk of thrombosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.