The diarylquinoline R207910 (TMC207) is a promising candidate in clinical development for the treatment of tuberculosis. Though R207910-resistant mycobacteria bear mutations in ATP synthase, the compound's precise target is not known. Here we establish by genetic, biochemical and binding assays that the oligomeric subunit c (AtpE) of ATP synthase is the target of R207910. Thus targeting energy metabolism is a new, promising approach for antibacterial drug discovery.
An estimated one-third of the world population is latently infected with Mycobacterium tuberculosis. These nonreplicating, dormant bacilli are tolerant to conventional anti-tuberculosis drugs, such as isoniazid. We recently identified diarylquinoline R207910 (also called TMC207) as an inhibitor of ATP synthase with a remarkable activity against replicating mycobacteria. In the present study, we show that R207910 kills dormant bacilli as effectively as aerobically grown bacilli with the same target specificity. Despite a transcriptional down-regulation of the ATP synthase operon and significantly lower cellular ATP levels, we show that dormant mycobacteria do possess residual ATP synthase enzymatic activity. This activity is blocked by nanomolar concentrations of R207910, thereby further reducing ATP levels and causing a pronounced bactericidal effect. We conclude that this residual ATP synthase activity is indispensable for the survival of dormant mycobacteria, making it a promising drug target to tackle dormant infections. The unique dual bactericidal activity of diarylquinolines on dormant as well as replicating bacterial subpopulations distinguishes them entirely from the current anti-tuberculosis drugs and underlines the potential of R207910 to shorten tuberculosis treatment.Mycobacterium tuberculosis infection results in more than 2 million deaths per year and is the leading cause of mortality in people infected with HIV 2 (1). The global epidemic of tuberculosis (TB) is fuelled by co-infection of HIV patients with TB and a rise in multidrug-resistant TB strains (2). Despite the fact that TB control programs have been in place for decades, approximately one-third of the world population is latently infected with M. tuberculosis. Reactivation of latent TB is a high risk factor for disease development, particularly in immunocompromised individuals, such as HIV-infected patients. For global control of the TB epidemic, there is an urgent medical need for new drugs active against dormant or latent bacilli. These socalled sterilizing drugs would be able to shorten the current 6-month treatment duration for drug-susceptible TB and also offer new treatment opportunities for latent TB.Tubercle bacilli enter lungs of healthy individuals by inhalation, where they are phagocytosed by the alveolar macrophages that eliminate most of the invading mycobacteria (3). However, a small proportion of bacilli survive and exist in a nonreplicating, hypometabolic state, and these bacilli are tolerant to killing by bactericidal anti-TB drugs, such as isoniazid (4). They can linger in these altered physiological environments for an individual's lifetime and maintain the capability of causing active TB after reactivation. The pathophysiological conditions in human lesions, thought to lead to persistence, are reduced oxygen tension, nutrient limitation, and acidic pH (5, 6).Recently, we identified a new chemical class, diarylquinolines (DARQs) that demonstrate potent anti-mycobacterial activity on replicating bacilli both in vitro and...
Adjuvant System AS01 is a liposome-based vaccine adjuvant containing 3-O-desacyl-4′-monophosphoryl lipid A and the saponin QS-21. AS01 has been selected for the clinical development of several candidate vaccines including the RTS,S malaria vaccine and the subunit glycoprotein E varicella zoster vaccine (both currently in phase III). Given the known immunostimulatory properties of MPL and QS-21, the objective of this study was to describe the early immune response parameters after immunization with an AS01-adjuvanted vaccine and to identify relationships with the vaccine-specific adaptive immune response. Cytokine production and innate immune cell recruitment occurred rapidly and transiently at the muscle injection site and draining lymph node postinjection, consistent with the rapid drainage of the vaccine components to the draining lymph node. The induction of Ag-specific Ab and T cell responses was dependent on the Ag being injected at the same time or within 24 h after AS01, suggesting that the early events occurring postinjection were required for these elevated adaptive responses. In the draining lymph node, after 24 h, the numbers of activated and Ag-loaded monocytes and MHCIIhigh dendritic cells were higher after the injection of the AS01-adjuvanted vaccine than after Ag alone. However, only MHCIIhigh dendritic cells appeared efficient at and necessary for direct Ag presentation to T cells. These data suggest that the ability of AS01 to improve adaptive immune responses, as has been demonstrated in clinical trials, is linked to a transient stimulation of the innate immune system leading to the generation of high number of efficient Ag-presenting dendritic cells.
The Mus81-Eme1 endonuclease is implicated in the efficient rescue of broken replication forks in Saccharomyces cerevisiae and Schizosaccharomyces pombe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.