Experimental data have shown that antiepileptic drugs cause neurodegeneration in developing rats. Valproate (VPA) is the drug of choice in primary generalized epilepsies, and carbamazepine (CBZ) is one of the most prescribed drugs in partial seizures. These drugs block sodium channels, thereby reducing sustained repetitive neuronal firing. The intracellular mechanisms whereby AEDs induce neuronal cell death are unclear. We examined whether AEDs induce apoptotic cell death in cultured cortical cells and whether calcium ions are involved in the AED-induced cell death. VPA and CBZ increased apoptotic cell death and induced morphological changes that were characterized by cell shrinkage and nuclear condensation or fragmentation. Incubation of cortical cultures with VPA or CBZ decreased phospho-Akt levels. CBZ decreased the intracellular calcium levels. On the other hand, FPL64176, an L-type calcium channel activator, increased the intracellular calcium levels and prevented the AED-induced apoptosis. Glycogen synthase kinase-3 inhibitors, such as alsterpaullone and azakenpaullone, prevented the AED-induced apoptosis. These results suggest that intracellular calcium level changes are associated with AEDs and apoptosis and that the activation of glycogen synthase kinase-3 is involved in the death of rat cortical neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.