Polygenic risk scores have shown great promise in predicting complex disease risk and will become more accurate as training sample sizes increase. The standard approach for calculating risk scores involves linkage disequilibrium (LD)-based marker pruning and applying a p value threshold to association statistics, but this discards information and can reduce predictive accuracy. We introduce LDpred, a method that infers the posterior mean effect size of each marker by using a prior on effect sizes and LD information from an external reference panel. Theory and simulations show that LDpred outperforms the approach of pruning followed by thresholding, particularly at large sample sizes. Accordingly, predicted R(2) increased from 20.1% to 25.3% in a large schizophrenia dataset and from 9.8% to 12.0% in a large multiple sclerosis dataset. A similar relative improvement in accuracy was observed for three additional large disease datasets and for non-European schizophrenia samples. The advantage of LDpred over existing methods will grow as sample sizes increase.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Heritability and polygenic predictionIn the EUR sample, the SNP-based heritability (h 2 SNP ) (that is, the proportion of variance in liability attributable to all measured SNPs)
Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (OR=1.11, P=5.7×10−15), which persisted after excluding loci implicated in previous studies (OR=1.07, P=1.7 ×10−6). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 ×10−11) and neurobehavioral phenotypes in mouse (OR = 1.18, P= 7.3 ×10−5). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination.
Clinical measurements can be viewed as useful intermediate phenotypes to promote understanding of complex human diseases. To acquire comprehensive insights into the underlying genetics, here we conducted a genome-wide association study (GWAS) of 58 quantitative traits in 162,255 Japanese individuals. Overall, we identified 1,407 trait-associated loci (P < 5.0 × 10), 679 of which were novel. By incorporating 32 additional GWAS results for complex diseases and traits in Japanese individuals, we further highlighted pleiotropy, genetic correlations, and cell-type specificity across quantitative traits and diseases, which substantially expands the current understanding of the associated genetics and biology. This study identified both shared polygenic effects and cell-type specificity, represented by the genetic links among clinical measurements, complex diseases, and relevant cell types. Our findings demonstrate that even without prior biological knowledge of cross-phenotype relationships, genetics corresponding to clinical measurements successfully recapture those measurements' relevance to diseases, and thus can contribute to the elucidation of unknown etiology and pathogenesis.
We carried out a genome-wide association study of schizophrenia (479 cases, 2,937 controls) and tested loci with P < 10(-5) in up to 16,726 additional subjects. Of 12 loci followed up, 3 had strong independent support (P < 5 x 10(-4)), and the overall pattern of replication was unlikely to occur by chance (P = 9 x 10(-8)). Meta-analysis provided strongest evidence for association around ZNF804A (P = 1.61 x 10(-7)) and this strengthened when the affected phenotype included bipolar disorder (P = 9.96 x 10(-9)).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.