Chronic kidney disease (CKD) is one of the severe side effects of type 1 diabetes mellitus (T1DM). However, the detection and diagnosis of CKD are often delayed because of its asymptomatic nature. In addition, patients often tend to bypass the traditional urine protein (urinary albumin)-based CKD detection test. Even though disease detection using machine learning (ML) is a well-established field of study, it is rarely used to diagnose CKD in T1DM patients. This research aimed to employ and evaluate several ML algorithms to develop models to quickly predict CKD in patients with T1DM using easily available routine checkup data. This study analyzed 16 years of data of 1375 T1DM patients, obtained from the Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials directed by the National Institute of Diabetes, Digestive, and Kidney Diseases, USA. Three data imputation techniques (RF, KNN, and MICE) and the SMOTETomek resampling technique were used to preprocess the primary dataset. Ten ML algorithms including logistic regression (LR), k-nearest neighbor (KNN), Gaussian naïve Bayes (GNB), support vector machine (SVM), stochastic gradient descent (SGD), decision tree (DT), gradient boosting (GB), random forest (RF), extreme gradient boosting (XGB), and light gradient-boosted machine (LightGBM) were applied to developed prediction models. Each model included 19 demographic, medical history, behavioral, and biochemical features, and every feature’s effect was ranked using three feature ranking techniques (XGB, RF, and Extra Tree). Lastly, each model’s ROC, sensitivity (recall), specificity, accuracy, precision, and F-1 score were estimated to find the best-performing model. The RF classifier model exhibited the best performance with 0.96 (±0.01) accuracy, 0.98 (±0.01) sensitivity, and 0.93 (±0.02) specificity. LightGBM performed second best and was quite close to RF with 0.95 (±0.06) accuracy. In addition to these two models, KNN, SVM, DT, GB, and XGB models also achieved more than 90% accuracy.
Type 1 diabetes mellitus (T1DM) patients are a significant threat to chronic kidney disease (CKD) development during their life. However, there is always a high chance of delay in CKD detection because CKD can be asymptomatic, and T1DM patients bypass traditional CKD tests during their routine checkups. This study aims to develop and validate a prediction model and nomogram of CKD in T1DM patients using readily available routine checkup data for early CKD detection. This research utilized 1375 T1DM patients’ sixteen years of longitudinal data from multi-center Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials conducted at 28 sites in the USA and Canada and considered 17 routinely available features. Three feature ranking algorithms, extreme gradient boosting (XGB), random forest (RF), and extremely randomized trees classifier (ERT), were applied to create three feature ranking lists, and logistic regression analyses were performed to develop CKD prediction models using these ranked feature lists to identify the best performing top-ranked features combination. Finally, the most significant features were selected to develop a multivariate logistic regression-based CKD prediction model for T1DM patients. This model was evaluated using sensitivity, specificity, accuracy, precision, and F1 score on train and test data. A nomogram of the final model was further generated for easy application in clinical practices. Hypertension, duration of diabetes, drinking habit, triglycerides, ACE inhibitors, low-density lipoprotein (LDL) cholesterol, age, and smoking habit were the top-8 features ranked by the XGB model and identified as the most important features for predicting CKD in T1DM patients. These eight features were selected to develop the final prediction model using multivariate logistic regression, which showed 90.04% and 88.59% accuracy in internal and test data validation. The proposed model showed excellent performance and can be used for CKD identification in T1DM patients during routine checkups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.