The greatest risk factor for the formation of numerous significant chronic disorders is aging. Understanding the core molecular underpinnings of aging can help to slow down the inevitable process. Systematic study of gene expression or DNA methylation data is possible at the transcriptomics and epigenetics levels. DNA methylation and gene expression are both affected by aging. Gene expression is an important element in the aging of Homo sapiens. In this work, we evaluated the expression of differentially expressed genes (DEGs), proteins, and transcription factors (TFs) in three different types of cells in mice: antibody-secreting cells, cardiac mesenchymal stromal cells, and skeletal muscle cells. The goal of this article is to uncover a common cause during aging among these cells in order to increase understanding about establishing complete techniques for preventing aging and improving people's quality of life. We conducted a comprehensive network-based investigation to establish which genes and proteins are shared by the three different types of aged cells. Our findings clearly indicated that aging induces gene dysregulation in immune, pharmacological, and apoptotic pathways. Furthermore, our research developed a list of hub genes with differential expression in aging responses that should be investigated further to discover viable anti-aging treatments.
The greatest risk factor for the formation of numerous signi cant chronic disorders is aging. Understanding the core molecular underpinnings of aging can help to slow down the inevitable process. Systematic study of gene expression or DNA methylation data is possible at the transcriptomics and epigenetics levels. DNA methylation and gene expression are both affected by aging. Gene expression is an important element in the aging of Homo sapiens. In this work, we evaluated the expression of differentially expressed genes (DEGs), proteins, and transcription factors (TFs) in three different types of cells in mice: antibody-secreting cells, cardiac mesenchymal stromal cells, and skeletal muscle cells. The goal of this article is to uncover a common cause during aging among these cells in order to increase understanding about establishing complete techniques for preventing aging and improving people's quality of life. We conducted a comprehensive network-based investigation to establish which genes and proteins are shared by the three different types of aged cells. Our ndings clearly indicated that aging induces gene dysregulation in immune, pharmacological, and apoptotic pathways. Furthermore, our research developed a list of hub genes with differential expression in aging responses that should be investigated further to discover viable anti-aging treatments.
Sarcoma cancers are uncommon malignant tumors, and there are many subgroups, including fibrosarcoma (FS), which mainly affects middle-aged and older adults in deep soft tissues. Rhabdomyosarcoma (RMS), on the other hand, is the most common soft-tissue sarcoma in children and is located in the head and neck area. Osteosarcomas (OS) is the predominant form of primary bone cancer among young adults, primarily resulting from sporadically random mutations. This frequently results in the dissemination of cancer cells to the lungs, commonly known as metastasis. Mesodermal cells are the origin of sarcoma cancers. In this study, a rather radical approach has been applied. Instead of comparing homogenous cancer types, we focus on three main subtypes of sarcoma: fibrosarcoma, rhabdomyosarcoma, and osteosarcoma, and compare their gene expression with normal cell groups to identify the differentially expressed genes (DEGs). Next, by applying protein-protein interaction (PPI) network analysis, we determine the hub genes and crucial factors, such as transcription factors (TFs), affected by these types of cancer. Our findings indicate a modification in a range of pathways associated with cell cycle, extracellular matrix, and DNA repair in these three malignancies. Results showed that fibrosarcoma (FS), rhabdomyosarcoma (RMS), and osteosarcoma (OS) had 653, 1270, and 2823 down-regulated genes (DEGs), respectively. Interestingly, there were 24 DEGs common to all three types. Network analysis showed that the fibrosarcoma (FS) network had two sub-networks identified in FS that contributed to the catabolic process of collagen via the G-protein coupled receptor signaling pathway. The rhabdomyosarcoma (RMS) network included nine sub-networks associated with cell division, extracellular matrix organization, mRNA splicing via spliceosome, and others. The osteosarcoma (OS) network has 13 sub-networks, including mRNA splicing, sister chromatid cohesion, DNA repair, etc. In conclusion, the common DEGs identified in this study have been shown to play significant and multiple roles in various other cancers based on the literature review, indicating their significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.