All mobile bases suffer from localization errors. Previous approaches to accommodate for localization errors either use external sensors such as lasers or sonars, or use internal sensors like encoders. An encoder's information is integrated to derive the robot's position; this is called odometry. A combination of external and internal sensors will ultimately solve the localization error problem, but this paper focuses only on processing the odometry information. We solve the localization problem by forming a new odometry error model for the synchro-drive robot then use a novel procedure to accurately estimate the error parameters of the odometry error model. This new procedure drives the robot through a known path and then uses the shape of the resulting path to estimate the model parameters. Experimental results validate that the proposed method precisely estimates the error parameters and that the derived odometry error model of the synchro-drive robot is correct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.