Perovskite solar cells (PSCs) have received high attention in the past few years due to their terrific photovoltaic performance and potentially low production cost. However, the use of hole transport materials (HTMs) with hygroscopic dopants, which cause the inevitable instability of device performance, has hampered commercialization. Herein, a dopant-free polymeric HTM with functional aromatic rings was used to optimize the HTM/perovskite interface and employed in a planar n-i-p configuration. Poly(1,4-(2,5-bis((2-butyloctyloxy)phenylene)-2,7-(5,5,10,10-tetrakis(4-hexylphenyl)-5,10-dihydro-s-indaceno[2,1b:6,5-b']dithiophene)) (IDTB) co-polymer constructed with indaceno[1,2-b:5,6-b']dithiophene and bis(alkyloxy)benzene units adopts an S•••O intramolecular bond linked ladder-like planar conjugated polymer backbone. Without any dopant, the hole mobility of IDTB is in the same order of magnitude as a doped 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD). Also, the hydrophobic nature of IDTB facilitated the long-term stability of the perovskite underneath. The unencapsulated PSC devices made of IDTB-based HTM achieved a power conversion efficiency of 19.38 % with a high moisture stability, retaining above 80 % of initial power conversion efficiency at 65 % relative humidity for more than 10 days. The superior passivation effect to perovskite surface made a hysteresis of 0.44 % was almost the least reported for regular planar undoped polymer HTM PSCs.
A simple deposition process for preparing crystalline semiconductors with low degrees of disorder is of paramount interest for both device applications and research investigations. This study centers on the ultrasonically sprayedaerosol based approach for preparing crystals of methylammonium lead trihalide perovskite (CH 3 NH 3 PbI 3 ). The surface photovoltage (SPV) spectra are found to depend strongly on the preparation conditions, with the SPV signals (below the material's band gap) providing information on the defect states. The measured values of tail states near the band gap (E t ) are found to be about 21 and 52 meV for the CH 3 NH 3 PbI 3 crystals prepared by the ultrasonically sprayed-on and spun casting approaches, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.