Synaptotagmin 1 is a vesicle-anchored membrane protein that functions as the Ca2+ sensor for synchronous neurotransmitter release. In this work, an arginine containing region in the second C2 domain of synaptotagmin 1 (C2B) is shown to control the expansion of the fusion pore and thereby the concentration of neurotransmitter released. This arginine apex, which is opposite the Ca2+ binding sites, interacts with membranes or membrane reconstituted SNAREs; however, only the membrane interactions occur under the conditions in which fusion takes place. Other regions of C2B influence the fusion probability and kinetics but do not control the expansion of the fusion pore. These data indicate that the C2B domain has at least two distinct molecular roles in the fusion event, and the data are consistent with a model where the arginine apex of C2B positions the domain at the curved membrane surface of the expanding fusion pore.
Synaptotagmin 1 is a vesicle-anchored membrane protein that functions as the Ca2+ sensor for synchronous neurotransmitter release. In this work, an arginine containing region in the second C2 domain of synaptotagmin 1 (C2B) is shown to control the expansion of the fusion pore and thereby the concentration of neurotransmitter released. This arginine apex, which is opposite the Ca2+ binding sites, interacts with membranes or membrane reconstituted SNAREs; however, only the membrane interactions occur under the conditions in which fusion takes place. Other regions of C2B influence the probably and kinetics of fusion but do not control the expansion of the fusion pore. These data indicate that the C2B domain has at least two distinct molecular roles in the fusion event, and the data are consistent with a novel model where the arginine apex of C2B positions the domain at the curved membrane surface of the expanding fusion pore.
contacting the digestive vacuole. Next, to interrogate the requirement of acidification for parasite egress, segmented parasites were treated with weak bases and an ionophore to increase or dissipate the pH in acidic organelles. We found that 30 min acute treatment of schizonts with ammonium chloride, chloroquine and monensin inhibit parasite egress in a dosedependent manner. We conclude that pH may play a role in parasite egress mechanism and that PVM tubules offer a putative delivery pathway to acidify the extra-parasitic compartment of the infected RBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.