Many Internet services depend on the integrity of their users, even when these users have strong incentives to behave dishonestly. Drawing on experiments in two different online contexts, this study measures the prevalence of cheating and evaluates two different methods for deterring it. Our first experiment investigates cheating behavior in a pair of online exams spanning 632 students in India. Our second experiment examines dishonest behavior on Mechanical Turk through an online task with 2,378 total participants. Using direct measurements that are not dependent on self-reports, we detect significant rates of cheating in both environments. We confirm that honor codes-despite frequent use in massive open online courses (MOOCs)-lead to only a small and insignificant reduction in online cheating behaviors. To overcome these challenges, we propose a new intervention: a stern warning that spells out the potential consequences of cheating. We show that the warning leads to a significant (about twofold) reduction in cheating, consistent across experiments. We also characterize the demographic correlates of cheating on Mechanical Turk. Our findings advance the understanding of cheating in online environments, and suggest that replacing traditional honor codes with warnings could be a simple and effective way to deter cheating in online courses and online labor marketplaces.
Background Digital adherence technologies have been widely promoted as a means to improve tuberculosis medication adherence. However, uptake of these technologies has been suboptimal by both patients and health workers. Not surprisingly, studies have not demonstrated significant improvement in treatment outcomes. Objective This study aimed to optimize a well-known digital adherence technology, 99DOTS, for end user needs in Uganda. We describe the findings of the ideation phase of the human-centered design methodology to adapt 99DOTS according to a set of design principles identified in the previous inspiration phase. Methods 99DOTS is a low-cost digital adherence technology wherein tuberculosis medication blister packs are encased within an envelope that reveals toll-free numbers that patients can call to report dosing. We identified 2 key areas for design and testing: (1) the envelope, including the form factor, content, and depiction of the order of pill taking; and (2) the patient call-in experience. We conducted 5 brainstorming sessions with all relevant stakeholders to generate a suite of potential prototype concepts. Senior investigators identified concepts to further develop based on feasibility and consistency with the predetermined design principles. Prototypes were revised with feedback from the entire team. The envelope and call-in experience prototypes were tested and iteratively revised through focus groups with health workers (n=52) and interviews with patients (n=7). We collected and analyzed qualitative feedback to inform each subsequent iteration. Results The 5 brainstorming sessions produced 127 unique ideas that we clustered into 6 themes: rewards, customization, education, logistics, wording and imagery, and treatment countdown. We developed 16 envelope prototypes, 12 icons, and 28 audio messages for prototype testing. In the final design, we altered the pill packaging envelope by adding a front flap to conceal the pills and reduce potential stigma associated with tuberculosis. The flap was adorned with either a blank calendar or map of Uganda. The inside cover contained a personalized message from a local health worker including contact information, pictorial pill-taking instructions, and a choice of stickers to tailor education to the patient and phase of treatment. Pill-taking order was indicated with colors, chevron arrows, and small mobile phone icons. Last, the call-in experience when patients report dosing was changed to a rotating series of audio messages centered on the themes of prevention, encouragement, and reassurance that tuberculosis is curable. Conclusions We demonstrated the use of human-centered design as a promising tool to drive the adaptation of digital adherence technologies to better address the needs and motivations of end users. The next phase of research, known as the implementation phase in the human-centered design methodology, will investigate whether the adapted 99DOTS platform results in higher levels of engagement from patients and health workers, and ultimately improves tuberculosis treatment outcomes.
Students in the developing world are frequently cited as being among the most important beneficiaries of online education initiatives such as massive open online courses (MOOCs). While some predict that online classrooms will replace physical classrooms, our experience suggests that blending online and in-person instruction is more likely to succeed in developing regions. However, very little research has actually been done on the effects of online education or blended learning in these environments. In this paper we describe a blended learning initiative that combines videos from a large online course with peer-led sessions for undergraduate technical education in India. We performed a randomized controlled trial (RCT) that indicates our intervention was associated with a small but significant improvement in performance on a summative exam. We discuss the results of the RCT and an ethnographic study of the intervention to make recommendations for future, scalable blended learning initiatives for places such as India.
We measure the effectiveness of a traditional honor code at deterring cheating in an online examination, and we compare it to that of a stern warning. Through experimental evaluation in a 409-student online course, we find that a pre-task warning leads to a significant decrease in the rate of cheating while an honor code has a smaller (non-significant) effect. Unlike much prior work, we measure the rate of cheating directly and we do not rely on potentially inaccurate post-examination surveys. Our findings demonstrate that replacing traditional honor codes with warnings could be a simple and effective way to deter cheating in online courses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.