The use of thyroid cad to differentiate malignant from benign lesions shows accuracy similar to that obtained via visual inspection by radiologists. Thyroid cad might be considered a viable way to generate a second opinion for radiologists in clinical practice.
To develop a new method for measuring Alzheimer’s disease (AD)-specific similarity of cortical atrophy patterns at the individual-level, we employed an individual-level machine learning algorithm. A total of 869 cognitively normal (CN) individuals and 473 patients with probable AD dementia who underwent high-resolution 3T brain MRI were included. We propose a machine learning-based method for measuring the similarity of an individual subject’s cortical atrophy pattern with that of a representative AD patient cohort. In addition, we validated this similarity measure in two longitudinal cohorts consisting of 79 patients with amnestic-mild cognitive impairment (aMCI) and 27 patients with probable AD dementia. Surface-based morphometry classifier for discriminating AD from CN showed sensitivity and specificity values of 87.1% and 93.3%, respectively. In the longitudinal validation study, aMCI-converts had higher atrophy similarity at both baseline (p < 0.001) and first year visits (p < 0.001) relative to non-converters. Similarly, AD patients with faster decline had higher atrophy similarity than slower decliners at baseline (p = 0.042), first year (p = 0.028), and third year visits (p = 0.027). The AD-specific atrophy similarity measure is a novel approach for the prediction of dementia risk and for the evaluation of AD trajectories on an individual subject level.
Wireless sensor networks equipped with various gas sensors have been actively used for air quality monitoring. Previous studies have typically explored system issues that include middleware or networking performance, but most research has barely considered the details of the hardware and software of the sensor node itself. In this paper, we focus on the design and implementation of a sensor board for air pollutant monitoring applications. Several hardware and software issues are discussed to explore the possibilities of a practical WSN-based air pollution monitoring system. Through extensive experiments and evaluation, we have determined the various characteristics of the gas sensors and their practical implications for air pollutant monitoring systems.
BACKGROUND: Only a limited number of neuroimaging studies have explored the effects of ambient air pollution in adults. The prior studies have investigated only cortical volume, and they have reported mixed findings, particularly for gray matter. Furthermore, the association between nitrogen dioxide (NO 2) and neuroimaging markers has been little studied in adults. OBJECTIVES: We investigated the association between long-term exposure to air pollutants (NO 2 , particulate matter (PM) with aerodynamic diameters of ≤10 lm (PM10) and ≤2:5 lm (PM2.5), and neuroimaging markers. METHODS: The study included 427 men and 530 women dwelling in four cities in the Republic of Korea. Long-term concentrations of PM10, NO 2 , and PM2.5 at residential addresses were estimated. Neuroimaging markers (cortical thickness and subcortical volume) were obtained from brain magnetic resonance images. A generalized linear model was used, adjusting for potential confounders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.