In this study, the change in the temperature and moisture content of zucchini cooked in microwave and infrared combination oven were modeled by finite element method. The exact form of Lambert law was used to predict the microwave power. Experimental temperature data at different positions of zucchini and moisture content data were used to verify the models obtained for different microwave (10, 30, and 50%) and infrared power (10, 40, and 70%) combinations for 600 s. Measured data and the model were in good agreement with an average root mean square error of 5.66°C for temperature and 2.52% for moisture content. The effects of microwave and infrared powers on rate of heat and mass transfer of zucchini were analyzed. Practical Applications Microwave–infrared combination heating offers considerably faster heating with main disadvantage of hot and cold spots. By the help of mathematical explanation of systems, these problems can be eliminated. In this research, coupled three‐dimensional finite element model was developed to simulate heat and mass transfer of zucchini cooked in microwave and infrared combination oven. The microwave power was predicted by the Lambert law. In addition, this study presented the effect of microwave and infrared power on rate of heat and mass transfer of zucchini and the variation of temperature with respect to position in the zucchini sample.
Fenugreek is one of the well‐known legumes, used for its antimicrobial, antioxidant, nutritional, and pharmaceutical properties. It was aimed to obtain coffee by blending microwave (600 W)‐roasted fenugreek with coffee arabica and to determine the best roasting conditions (2 and 4 min), and blending ratios (20% and 50%) for fenugreek seeds by consumer sensory analysis. A voluntary, minimal‐trained consumer panel of 80 panelists was conducted. Coffee from roasted Arabica beans (100%) was used as a control. Cronbach's alpha values of 67.2% and 90.9% were obtained for the reliability of the first and second parts of the survey, respectively. The attributes “brown” color, “burnt,” and “bitter” taste, and “astringent” texture were significantly different between samples (p < 0.05), whereas oily appearance, green color, coffee, green/vegan, fruity, sour, sweet, nutty, caramel, cacao, caffeine and creamy flavor, and viscosity sensation were statistically the same. The Tamhane T2 post hoc test showed that the color of the control sample was more brownish, whereas the 50% blend of 4 min roasted fenugreek had a more burnt, bitter, and astringent taste. Appreciation scores for taste/aroma, appearance, and mouthfeel also differed significantly between samples, whereas odor was rated as the same by panelists. This study shows that sample with 20% mixture of fenugreek roasted for 4 min at 600 W had statistically the same scores as the control sample in terms of odor, appearance, aroma, taste, and mouthfeel. These findings were also supported by physical and antioxidative quality measurements such as color, pH, moisture content, total phenolic content, and antioxidant activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.