Afferent connections of rat primary visual cortex (area 17 or V1 area) and the rostral and caudal parts of areas 18a and 18b were studied, by placing in each of the areas, small electrophoretic injections of enzyme horseradish peroxidase (HRP) or wheat germ agglutinated-HRP. The results indicate that: 1) each of the areas has a distinct pattern of distribution of afferent neurons in the ipsilateral visual thalamus - area 17 receives its principal thalamic input from the dorsal lateral geniculate nucleus, the caudal parts of areas 18a and 18b receive a major thalamic input from the lateral posterior nucleus and a minor input from the posterior nucleus, while the rostral parts of areas 18a and 18b receive a major input from the posterior nucleus, and a minor projection from the lateral posterior nucleus; 2) the rostral and caudal parts of areas 18a and 18b each receive an associational input from area 17; 3) the rostral parts of areas 18a and 18b each receive associational input from three different extrastriate regions, the caudal part of the same extrastriate area, and the rostral and caudal parts of the other extrastriate area, whereas the caudal parts of areas 18a and 18b receive associational inputs only from one or two extrastriate regions; 4) area 17, area 18b and rostral area 18a each receive a substantial associational input from lamina V of the caudal part of the frontal eye field (FEF) in the motor cortex; however the input from the FEF to caudal area 18a (if present) is very small; 5) The extrastriate areas studied receive associational input from the restrosplenial cingulate area 29d; however, the input from area 29d to area 17 appears to be very small. The distinct patterns of distribution of prosencephalic afferents suggest to us that multiple retinotopically organized areas described previously in the rat cortex (cf Montero 1981; Espinoza and Thomas 1983) represent functionally distinct areas.
These findings indicate that the uterine surface protrusions observed in the human are not pinocytotic and therefore probably perform a function different from similar structures observed in rats and mice. This highlights the need to alter nomenclature from pinopods to uterodomes.
Background: Manipulation of the follicular phase uterine epithelium in women undergoing infertility treatment, has not generally shown differing morphological effects on uterine epithelial characteristics using Scanning Electron Microscopy (SEM) and resultant pregnancy rates have remained suboptimal utilising these manipulations. The present study observed manipulation of the proliferative epithelium, with either 7 or 14 days of sequential oestrogen (E) therapy followed by progesterone (P) and assessed the appearance of pinopods (now called uterodomes) for their usefulness as potential implantation markers in seven women who subsequently became pregnant. Three endometrial biopsies per patient were taken during consecutive cycles: day 19 of a natural cycle -(group 1), days 11/12 of a second cycle after 7 days E then P -(group 2), and days 19/22 of a third cycle after 14 days E then P -(group 3). Embryo transfer (ET) was performed in a subsequent long treatment cycle (as per Group 3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.