The Dam DNA methylase of Escherichia coli is required for methyl-directed mismatch repair, regulation of chromosomal DNA replication initiation from oriC (which is DnaA-dependent), and regulation of gene expression. Here, we show that Dam suppresses aberrant oriC -independent chromosomal replication (also called constitutive stable DNA replication, or cSDR). Dam deficiency conferred cSDR and, in presence of additional mutations (Δ tus, rpoB*35 ) that facilitate retrograde replication fork progression, rescued the lethality of Δ dnaA mutants. The DinG helicase was required for rescue of Δ dnaA inviability during cSDR. Viability of Δ dnaA dam derivatives was dependent on the mismatch repair proteins, since such viability was lost upon introduction of deletions in mutS, mutH or mutL ; thus generation of double strand ends (DSEs) by MutHLS action appears to be required for cSDR in the dam mutant. On the other hand, another DSE-generating agent phleomycin was unable to rescue Δ dnaA lethality in dam + derivatives ( mutS + or Δ mutS ), but it could do so in the dam Δ mutS strain. These results point to a second role for Dam deficiency in cSDR. We propose that in Dam-deficient strains, there is an increased likelihood of reverse replication restart (towards oriC ) following recombinational repair of DSEs on the chromosome.
Transcription termination by Rho is essential for viability in various bacteria, including some major pathogens. Since Rho acts by targeting nascent RNAs that are not simultaneously translated, it also regulates antisense transcription. Here we show that RNase H-deficient mutants of Escherichia coli exhibit heightened sensitivity to the Rho inhibitor bicyclomycin, and that Rho deficiency provokes increased formation of RNA–DNA hybrids (R-loops) which is ameliorated by expression of the phage T4-derived R-loop helicase UvsW. We also provide evidence that in Rho-deficient cells, R-loop formation blocks subsequent rounds of antisense transcription at more than 500 chromosomal loci. Hence these antisense transcripts, which can extend beyond 10 kb in their length, are only detected when Rho function is absent or compromised and the UvsW helicase is concurrently expressed. Thus the potential for antisense transcription in bacteria is much greater than hitherto recognized; and the cells are able to retain viability even when nearly one-quarter of their total non-rRNA abundance is accounted for by antisense transcripts, provided that R-loop formation from them is curtailed.
Topoisomerase I (Topo I) of Escherichia coli , encoded by topA , acts to relax negative supercoils in DNA. Topo I deficiency results in hypernegative supercoiling, formation of transcription-associated RNA-DNA hybrids (R-loops), and DnaA- and oriC -independent constitutive stable DNA replication (cSDR), but some uncertainty persists as to whether topA is essential for viability in E. coli and related enterobacteria. Here we show that several topA alleles, including Δ topA , confer lethality in derivatives of wild-type E. coli strain MG1655. Viability in absence of Topo I was restored with two perturbations, neither of which reversed the hypernegative supercoiling phenotype: (i) in a reduced-genome strain MDS42, or (ii) by an RNA polymerase (RNAP) mutation rpoB*35 that has been reported to alleviate the deleterious consequences of RNAP backtracking and transcription-replication conflicts. Four phenotypes related to cSDR were identified for topA mutants: (i) One of the topA alleles rescued Δ dnaA lethality; (ii) in dnaA + derivatives, Topo I deficiency generated a characteristic copy number peak in the terminus region of the chromosome; (iii) topA was synthetically lethal with rnhA (encoding RNase HI, whose deficiency also confers cSDR); and (iv) topA rnhA synthetic lethality was itself rescued by Δ dnaA . We propose that the terminal lethal consequence of hypernegative DNA supercoiling in E. coli topA mutants is RNAP backtracking during transcription elongation and associated R-loop formation, which in turn lead to transcription-replication conflicts and to cSDR. Importance In all life forms, double helical DNA exists in a topologically supercoiled state. The enzymes DNA gyrase and topoisomerase I act, respectively, to introduce and to relax negative DNA supercoils in Escherichia coli . That gyrase deficiency leads to bacterial death is well established, but the essentiality of topoisomerase I for viability has been less certain. This study confirms that topoisomerase I is essential for E. coli viability, and suggests that in its absence aberrant chromosomal DNA replication and excessive transcription-replication conflicts occur that are responsible for lethality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.