BackgroundMSP-1 is one of the potential malarial vaccine candidate antigens. However, extensive genetic polymorphism of this antigen in the field isolates of Plasmodium falciparum represents a major hindrance for the development of an effective vaccine. Therefore, this study aimed to establish the prevalence and genetic polymorphisms of K1, MAD20 and RO33 allelic types of msp-1 block 2 among P. falciparum clinical isolates from Lao PDR.MethodsPlasmodium falciparum isolates were collected from 230 P. falciparum-infected blood samples from three regions of Lao PDR. K1, MAD20 and RO33 were detected by nested PCR; SSCP was used for polymorphism screening. The nested PCR products of each K1, MAD20 and RO33 allelic types that had different banding patterns by SSCP, were sequenced.ResultsThe overall prevalence of K1, MAD20 and RO33 allelic types in P. falciparum isolates from Lao PDR were 66.95%, 46.52% and 31.30%, respectively, of samples under study. Single infections with K1, MAD20 and RO33 allelic types were 27.83%, 11.74% and 5.22%, respectively; the remainders were multiple clonal infections. Neither parasite density nor age was related to MOI. Sequence analysis revealed that there were 11 different types of K1, eight different types of MAD20, and 7 different types of RO33. Most of them were regional specific, except type 1 of each allelic type was common found in 3 regions under study.ConclusionsGenetic polymorphism with diverse allele types was identified in msp-1 block 2 among P. falciparum clinical isolates in Lao PDR. A rather high level of multiple clonal infections was also observed but the multiplicity of infection was rather low as not exceed 2.0. This basic data are useful for treatment and malaria control program in Lao PDR.
Background The prevalence and genotypes of G6PD deficiency vary worldwide, with higher prevalence in malaria endemic areas. The first-time assessment of G6PD deficiency prevalence and molecular characterization of G6PD mutations in the Lao Theung population were performed in this study. Methods A total of 252 unrelated Lao Theung participants residing in the Lao People’s Democratic Republic (PDR) were recruited. All participant samples were tested for G6PD enzyme activity and G6PD gene mutations. The amplification refractory mutation system (ARMS)-PCR for detecting G6PD Aures was developed. Results The G6PD mutations were detected in 11.51% (29/252) of the participants. Eight G6PD mutations were detected. The G6PD Aures was the most common mutation identified in this cohort, which represented 58.62% (17/29) of all mutation. The mutation pattern was homogenous, predominantly involving the G6PD Aures mutation (6.75%), followed by 1.19% G6PD Union and 0.79% each G6PD Jammu, G6PD Mahidol and G6PD Kaiping. One subject (0.4%) each carried G6PD Viangchan and G6PD Canton. Interestingly, one case of coinheritance of G6PD Aures and Quing Yan was detected in this cohort. Based on levels of G6PD enzyme activity, the prevalence of G6PD deficiency in the Lao Theung population was 9.13% (23/252). The prevalence of G6PD deficient males and females (activity < 30%) in the Lao Theung population was 6.41% (5/78) and 1.72% (3/174), respectively, and the prevalence of G6PD intermediate (activity 30–70%) was 5.95% (15/252). Conclusions The G6PD Aures mutation is highly prevalent in the Lao Theung ethnic group. The common G6PD variants in continental Southeast Asian populations, G6PD Viangchan, Canton, Kaiping, Union and Mahidol, were not prevalent in this ethnic group. The technical simplicity of the developed ARMS-PCR will facilitate the final diagnosis of the G6PD Aures.
Background: The prevalence and genotypes of G6PD deficiency vary worldwide, with higher prevalence in malaria endemic areas. The first time assessment of G6PD deficiency prevalence and molecular characterization of G6PD mutations in the Lao Theung population were performed in this study. Methods: A total of 252 unrelated Lao Theung participants residing in the Lao People's Democratic Republic (PDR) were recruited. All participant samples were tested for G6PD enzyme activity and G6PD gene mutations. The amplification refractory mutation system (ARMS)-PCR for detecting G6PD Aures was developed.Results: The G6PD mutations were detected in 11.51% (29/252) of the participants. Eight G6PD mutations were detected. The G6PD Aures was the most common mutation identified in this cohort, which represented 58.62 % (17/29) of all mutation. The mutation pattern was homogenous, predominantly involving the G6PD Aures mutation (6.75%), followed by 1.19% G6PD Union and 0.79% each G6PD Jammu, G6PD Mahidol and G6PD Kaiping. One subject (0.4%) each carried G6PD Viangchan and G6PD Canton. Interestingly, one case of coinheritance of G6PD Aures and Quing Yan was detected in this cohort. Based on levels of G6PD enzyme activity, the prevalence of G6PD deficiency in the Lao Theung population was 9.13 % (23/252). The prevalence of G6PD deficient males and females (activity < 30 %) in the Lao Theung population was 6.41 % (5/78) and 1.72 % (3/174), respectively, and the prevalence of G6PD intermediate (activity 30-70 %) was 5.95 % (15/252).Conclusion: The G6PD Aures mutation is highly prevalent in the Lao Theung ethnic group. The common G6PD variants in continental Southeast Asian populations, G6PD Viangchan, Canton, Kaiping, Union and Mahidol, were not prevalent in this ethnic group. The technical simplicity of the developed ARMS-PCR will facilitate the final diagnosis of the G6PD Aures.
Background: The prevalence and genotypes of G6PD deficiency vary worldwide, with higher prevalence in malaria endemic areas. The first time assessment of G6PD deficiency prevalence and molecular characterization of G6PD mutations in the Lao Theung population were performed in this study. Methods: A total of 252 unrelated Lao Theung participants residing in the Lao People's Democratic Republic (PDR) were recruited. All participant samples were tested for G6PD enzyme activity and G6PD gene mutations. The amplification refractory mutation system (ARMS)-PCR for detecting G6PD Aures was developed.Results: The G6PD mutations were detected in 11.51% (29/252) of the participants. Eight G6PD mutations were detected. The G6PD Aures was the most common mutation identified in this cohort, which represented 58.62 % (17/29) of all mutation. The mutation pattern was homogenous, predominantly involving the G6PD Aures mutation (6.75%), followed by 1.19% G6PD Union and 0.79% each G6PD Jammu, G6PD Mahidol and G6PD Kaiping. One subject (0.4%) each carried G6PD Viangchan and G6PD Canton. Interestingly, one case of coinheritance of G6PD Aures and Quing Yan was detected in this cohort. Based on levels of G6PD enzyme activity, the prevalence of G6PD deficiency in the Lao Theung population was 9.13 % (23/252). The prevalence of G6PD deficient males and females (activity < 30 %) in the Lao Theung population was 6.41 % (5/78) and 1.72 % (3/174), respectively, and the prevalence of G6PD intermediate (activity 30-70 %) was 5.95 % (15/252).Conclusion: The G6PD Aures mutation is highly prevalent in the Lao Theung ethnic group. The common G6PD variants in continental Southeast Asian populations, G6PD Viangchan, Canton, Kaiping, Union and Mahidol, were not prevalent in this ethnic group. The technical simplicity of the developed ARMS-PCR will facilitate the final diagnosis of the G6PD Aures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.