The primary factors in determining beef quality grades are the amount and distribution of intramuscular fat percentage (IMFAT). Texture analysis was applied to ultrasound B-mode images from ribeye muscle of live beef cattle to predict its IMFAT. We used wavelet transform (WT) for multiresolutional texture analysis and second-order statistics using a gray-level co-occurrence matrix (GLCM) technique. Sets of WT- and GLCM-based texture features were calculated from ultrasonic images from 207 animals and linear regression methods were used for IMFAT prediction. WT-based features included energy ratios, central moments of wavelet-decomposed subimages and wavelet edge density. The regression model using WT features provided a root mean square error (RMSE) of 1.44 for prediction of IMFAT using validation images, while that of GLCM features provided an RMSE of 1.90. The prediction models using the WT features showed potential for objective quality evaluation in the live animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.