A silicon carbide (SiC) powder compact was prepared with submicrometer β‐SiC, yttrium nitrate as a sintering additive, and polysiloxane‐phenol resin as precursors for nanosized SiC. By hot‐pressing, fully dense SiC ceramics with good electrical conductivity, as high as 3 × 104 (Ω·m)−1 at room temperature, were obtained. The ceramics could be machined to complex shapes by electrodischarge machining.
Diamond-like (amorphous) carbon (DLC) films were prepared by dc magnetron sputtering and plasma enhanced chemical vapor deposition (PECVD) and diamond films were prepared by microwave plasma enhanced chemical vapor deposition (MPECVD). For the first time, chemical and mechanical characterization of the films from each category are carried out systematically and a comparison of the chemical and physical properties is provided. We find that DLC coatings produced by PECVD are superior in microhardness and modulus of elasticity to those produced by sputtering. PECVD films contain a larger fraction of sp3-bonding than the sputtered hydrogenated carbon films. Chemical and physical properties of the diamond films appear to be close to those of bulk diamond.
Porous layers were produced on a p-type (100) Si wafer by electrochemical anodic etching. The morphological, nanostructural and optical features of the porous Si were investigated as functions of the etching conditions. As the wafer resistivity was increased from 0.005 to 15 Ω·cm, the etched region exhibited ‘sponge’, ‘mountain’ and ‘column’-type morphologies. Among them, the sponge-type structured sample showed the largest surface area per unit volume. Silicon nanocrystallites, 2.0 to 5.3 nm in size, were confirmed in the porous layers. The photoluminescence peaks varied in the wavelength range of 615 to 722 nm. These changes in the maximum peak position were related to the size distribution of the Si crystallites in the porous silicon. The doping levels of the wafers significantly affect the size distribution of the Si crystallites as well as the light-emitting behavior of the etched Si, which contains nanoscale Si crystallites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.