The possibility of exposure to botulinum neurotoxin (BoNT), a powerful and potential bioterrorism agent, is considered to be ever increasing. The current gold-standard assay, live-mouse lethality, exhibits high sensitivity but has limitations including long assay times, whereas other assays evince rapidity but lack factors such as real-time monitoring or portability. In this study, we aimed to devise a novel detection system that could detect BoNT at below-nanomolar concentrations in the form of a stretchable biosensor. We used a field-effect transistor with a p-type channel and electrodes, along with a channel comprising aligned carbon nanotube layers to detect the type E light chain of BoNT (BoNT/E-Lc). The detection of BoNT/E-Lc entailed observing the cleavage of a unique peptide and the specific bonding between BoNT/E-Lc and antibody BoNT/E-Lc (Anti-BoNT/E-Lc). The unique peptide was cleaved by 60 pM BoNT/E-Lc; notably, 52 fM BoNT/E-Lc was detected within 1 min in the device with the antibody in the bent state. These results demonstrated that an all-carbon nanotube-based device (all-CNT-based device) could be produced without a complicated fabrication process and could be used as a biosensor with high sensitivity, suggesting its potential development as a wearable BoNT biosensor.
We report an electric conductance change in a graphene-based device upon molecular adsorption for detecting botulinum neurotoxin (BoNT) using the antibody–antigen binding strategy. This device consists of a 400-µm-wide monolayer of graphene between the source and drain electrodes. As-fabricated devices exhibit p-type behaviors. After modifying graphene with linkers and antibodies, BoNT detection was performed by dropping a target solution and measuring the conductance change of the devices. The immobilization of linkers on graphene decreases the electrical conductance as a result of electron transfer from linkers to graphene. However, the conductance change caused by the adsorption of antibodies or BoNTs is ascribed to the top-gating effects of the molecules adsorbed on graphene. The normalized conductance change of the graphene-based device upon antibody–BoNT binding was greater than 5%.
Paper-based sensors fabricated using the pencil-on-paper method are expected to find wide usage in many fields owing to their low cost and high reproducibility. Here, hydrogen (H2) detection was realized by applying palladium (Pd) nanoparticles (NPs) to electronic circuits printed on paper using a metal mask and a pencil. We confirmed that multilayered graphene was produced by the pencil, and then characterized Pd NPs were added to the pencil marks. To evaluate the gas-sensing ability of the sensor, its sensitivities and reaction rates in the presence and absence of H2 were measured. In addition, sensing tests performed over a wide range of H2 concentrations confirmed that the sensor had a detection limit as low as 1 ppm. Furthermore, the sensor reacted within approximately 50 s at all H2 concentrations tested. The recovery time of the sensor was 32 s at 1 ppm and 78 s at 1000 ppm. Sensing tests were also performed using Pd NPs of different sizes to elucidate the relationship between the sensing rate and catalyst size. The experimental results confirmed the possibility of fabricating paper-based gas sensors with a superior sensing capability and response rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.