We study the trust-region subproblem (TRS) of minimizing a nonconvex quadratic function over the unit ball with additional conic constraints. Despite having a nonconvex objective, it is known that the classical TRS and a number of its variants are polynomial-time solvable. In this paper, we follow a second-order cone (SOC) based approach to derive an exact convex reformulation of the TRS under a structural condition on the conic constraint. Our structural condition is immediately satisfied when there is no additional conic constraints, and it generalizes several such conditions studied in the literature. As a result, our study highlights an explicit connection between the classical nonconvex TRS and smooth convex quadratic minimization, which allows for the application of cheap iterative methods such as Nesterov's accelerated gradient descent, to the TRS. Furthermore, under slightly stronger conditions, we give a low-complexity characterization of the convex hull of the epigraph of the nonconvex quadratic function intersected with the constraints defining the domain without any additional variables. We also explore the inclusion of additional hollow constraints to the domain of the TRS, and convexification of the associated epigraph.
Robust optimization (RO) has emerged as one of the leading paradigms to efficiently model parameter uncertainty. The recent connections between RO and problems in statistics and machine learning domains demand for solving RO problems in ever more larger scale. However, the traditional approaches for solving RO formulations based on building and solving robust counterparts or the iterative approaches utilizing nominal feasibility oracles can be prohibitively expensive and thus significantly hinder the scalability of RO paradigm. In this paper, we present a general and flexible iterative framework to approximately solve robust convex optimization problems that is built on a fully online first-order paradigm. In comparison to the existing literature, a key distinguishing feature of our approach is that it only requires access to firstorder oracles that are remarkably cheaper than pessimization or nominal feasibility oracles, while maintaining the same convergence rates. This, in particular, makes our approach much more scalable and hence preferable in large-scale applications, specifically those from machine learning and statistics domains. We also provide new interpretations of existing iterative approaches in our framework and illustrate our framework on robust quadratic programming. arXiv:1607.06513v3 [math.OC]
In this paper, we consider two paradigms that are developed to account for uncertainty in optimization models: robust optimization (RO) and joint estimation-optimization (JEO). We examine recent developments on efficient and scalable iterative first-order methods for these problems, and show that these iterative methods can be viewed through the lens of online convex optimization (OCO). The standard OCO framework has seen much success for its ability to handle decision-making in dynamic, uncertain, and even adversarial environments. Nevertheless, our applications of interest present further flexibility in OCO via three simple modifications to standard OCO assumptions: we introduce two new concepts of weighted regret and online saddle point problems and study the possibility of making lookahead (anticipatory) decisions. Our analyses demonstrate that these flexibilities introduced into the OCO framework have significant consequences whenever they are applicable. For example, in the strongly convex case, minimizing unweighted regret has a proven optimal bound of O(log(T )/T ), whereas we show that a bound of O(1/T ) is possible when we consider weighted regret. Similarly, for the smooth case, considering 1-lookahead decisions results in a O(1/T ) bound, compared to O(1/ √ T ) in the standard OCO setting. Consequently, these OCO tools are instrumental in exploiting structural properties of functions and results in improved convergence rates for RO and JEO. In certain cases, our results for RO and JEO match the best known or optimal rates in the corresponding problem classes without data uncertainty.
We consider exact deterministic mixed-integer programming (MIP) reformulations of distributionally robust chance-constrained programs (DR-CCP) with random right-hand sides over Wasserstein ambiguity sets. The existing MIP formulations are known to have weak continuous relaxation bounds, and, consequently, for hard instances with small radius, or with a large number of scenarios, the branch-and-bound based solution processes suffer from large optimality gaps even after hours of computation time. This significantly hinders the practical application of the DR-CCP paradigm. Motivated by these challenges, we conduct a polyhedral study to strengthen these formulations. We reveal several hidden connections between DR-CCP and its nominal counterpart (the sample average approximation), mixing sets, and robust 0-1 programming. By exploiting these connections in combination, we provide an improved formulation and two classes of valid inequalities for DR-CCP. We test the impact of our results on a stochastic transportation problem numerically. Our experiments demonstrate the effectiveness of our approach; in particular our improved formulation and proposed valid inequalities reduce the overall solution times remarkably. Moreover, this allows us to significantly scale up the number of scenarios that can be handled in such DR-CCP formulations from 100s to 3000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.