This research examines the relationship between policy uncertainty and mergers and acquisitions (M&As). We find that policy uncertainty is negatively related to firm acquisitiveness and positively related to the time it takes to complete M&A deals. In addition, policy uncertainty motivates acquirers to use stock for payment and to pay lower bid premiums. Acquirers, on average, create larger shareholder value from M&A deals undertaken during periods of high policy uncertainty, which is attributable to their prudence as well as the wealth transfer from the financially constrained targets to acquirers.
We address the problem of Phylogenetic Placement, in which the objective is to insert short molecular sequences (called query sequences) into an existing phylogenetic tree and alignment on full-length sequences for the same gene. Phylogenetic placement has the potential to provide information beyond pure "species identification" (i.e., the association of metagenomic reads to existing species), because it can also give information about the evolutionary relationships between these query sequences and to known species. Approaches for phylogenetic placement have been developed that operate in two steps: first, an alignment is estimated for each query sequence to the alignment of the full-length sequences, and then that alignment is used to find the optimal location in the phylogenetic tree for the query sequence. Recent methods of this type include HMMALIGN+EPA, HMMALIGN+pplacer, and PaPaRa+EPA. We report on a study evaluating phylogenetic placement methods on biological and simulated data. This study shows that these methods have extremely good accuracy and computational tractability under conditions where the input contains a highly accurate alignment and tree for the full-length sequences, and the set of full-length sequences is sufficiently small and not too evolutionarily diverse; however, we also show that under other conditions accuracy declines and the computational requirements for memory and time exceed acceptable limits. We present SEPP, a general "boosting" technique to improve the accuracy and/or speed of phylogenetic placement techniques. The key algorithmic aspect of this booster is a dataset decomposition technique in SATé, a method that utilizes an iterative divide-and-conquer technique to co-estimate alignments and trees on large molecular sequence datasets. We show that SATé-boosting improves HMMALIGN+pplacer, placing short sequences more accurately when the set of input sequences has a large evolutionary diameter and produces placements of comparable accuracy in a fraction of the time for easier cases. SEPP software and the datasets used in this study are all available for free at
In this paper, we address the problem of learning when some cases are fully labeled while other cases are only partially labeled, in the form of partial labels. Partial labels are represented as a set of possible labels for each training example, one of which is the correct label. We introduce a discriminative learning approach that incorporates partial label information into the conventional margin-based learning framework. The partial label learning problem is formulated as a convex quadratic optimization minimizing the L2-norm regularized empirical risk using hinge loss. We also present an efficient algorithm for classification in the presence of partial labels. Experiments with different data sets show that partial label information improves the performance of classification when there is traditional fully-labeled data, and also yields reasonable performance in the absence of any fully labeled data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.