Highly crystalline, phase- and size-controlled CoO nanocrystals of hexagonal and cubic phases have been prepared by thermal decomposition of Co(acac)3 in oleylamine under an inert atmosphere. Kinetic and thermodynamic control for the precursor formation leads to two different seeds of hexagonal and cubic phases at higher temperatures. The crystal size of both CoO phases can be easily manipulated by changing the precursor concentration and reaction temperature.
The magnetic and transport properties of the Cr-doped manganites La(0.46)Sr(0.54)Mn(1-y)Cr(y)O3 ( 0 < or = y < or = 0.08) with the A-type antiferromagnetic structure were investigated. Upon cooling, we find multiple magnetic phase transitions, i.e., paramagnetic, ferromagnetic (FM), antiferromagnetic (AFM), and spin glass in the y = 0.02 sample. The low temperature spin glass state is not a conventional spin glass with randomly oriented magnetic moments but has a reentrant character. The reentrant spin glass behavior accompanied by the anomalous multiple magnetic transitions might be due to the competing interactions between the FM phase and the A-type AFM matrix induced by the random Cr impurity.
LiBH 4 is one of the promising candidates for hydrogen storage materials because of its high gravimetric and volumetric hydrogen capacity. However, its high dehydrogenation temperature and limited reversibility has been a hurdle for its use in real applications. In an effort to overcome this barrier and to adjust the thermal stability, we make a composite system LiBH 4 -Ca(BH 4 ) 2 . In order to fully characterize this composite system we study xLiBH 4 + (1 -x)Ca(BH 4 ) 2 for several x values between 0 and 1, using differential scanning calorimetry, in situ synchrotron X-ray diffraction, thermogravimetric analysis, and mass spectrometry. Interestingly, this composite undergoes a eutectic melting at ca. 200°C in a wide composition range, and the eutectic composition lies between x ) 0.6 and 0.8. The decomposition characteristics and the hydrogen capacity of this composite vary with x, and the decomposition temperature is lower than both the pure LiBH 4 and Ca(BH 4 ) 2 at intermediate compositions, for example, for x ≈ 0.4, decomposition is finished below 400°C releasing about 10 wt % of hydrogen. Partial reversibility of this system was also confirmed for the first time for the case of a mixed borohydride composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.