PurposeUnderstanding customers' revisiting behavior is highlighted in the field of service industry and the emergence of online communities has enabled customers to express their prior experience. Thus, purpose of this study is to investigate customers' reviews on an online hotel reservation platform, and explores their postbehaviors from their reviews.Design/methodology/approachThe authors employ two different approaches and compare the accuracy of predicting customers' post behavior: (1) using several machine learning classifiers based on sentimental dimensions of customers' reviews and (2) conducting the experiment consisted of two subsections. In the experiment, the first subsection is designed for participants to predict whether customers who wrote reviews would visit the hotel again (referred to as Prediction), while the second subsection examines whether participants want to visit one of the particular hotels when they read other customers' reviews (dubbed as Decision).FindingsThe accuracy of the machine learning approaches (73.23%) is higher than that of the experimental approach (Prediction: 58.96% and Decision: 64.79%). The key reasons of users' predictions and decisions are identified through qualitative analyses.Originality/valueThe findings reveal that using machine learning approaches show the higher accuracy of predicting customers' repeat visits only based on employed sentimental features. With the novel approach of integrating customers' decision processes and machine learning classifiers, the authors provide valuable insights for researchers and providers of hospitality services.
Non-communicable diseases (NCDs) are one of the major health threats in the world. Thus, identifying the factors that influence NCDs is crucial to monitor and manage diseases. This study investigates the effects of social-environmental and behavioral risk factors on NCDs as well as the effects of social-environmental factors on behavioral risk factors using an integrated research model. This study used a dataset from the 2017 Korea National Health and Nutrition Examination Survey. After filtering incomplete responses, 5462 valid responses remained. Items including one’s social-environmental factors (household income, education level, and region), behavioral factors (alcohol use, tobacco use, and physical activity), and NCDs histories were used for analyses. To develop a comprehensive index of each factor that allows comparison between different concepts, the researchers assigned scores to indicators of the factors and calculated a ratio of the scores. A series of path analyses were conducted to determine the extent of relationships among NCDs and risk factors. The results showed that social-environmental factors have notable effects on stroke, myocardial infarction, angina, diabetes, and gastric, liver, colon, lung, and thyroid cancers. The results indicate that the effects of social-environmental and behavioral risk factors on NCDs vary across the different types of diseases. The effects of social-environmental factors and behavioral risk factors significantly affected NCDs. However, the effect of social-environmental factors on behavioral risk factors was not supported. Furthermore, social-environmental factors and behavioral risk factors affect NCDs in a similar way. However, the effects of behavioral risk factors were smaller than those of social-environmental factors. The current research suggests taking a comprehensive view of risk factors to further understand the antecedents of NCDs in South Korea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.