In this study, we aimed to investigate the wavelength-dependent effects of hair growth on the shaven backs of Sprague-Dawley rats using laser diodes with wavelengths of 632, 670, 785, and 830 nm. Each wavelength was selected by choosing four peak wavelengths from an action spectrum in the range 580 to 860 nm. The laser treatment was performed on alternating days over a 2-week period. The energy density was set to 1.27 J/cm(2) for the first four treatments and 1.91 J/cm(2) for the last four treatments. At the end of the experiment, both photographic and histological examinations were performed to evaluate the effect of laser wavelength on hair growth. Overall, the results indicated that low-level laser therapy (LLLT) with a 830-nm wavelength resulted in greater stimulation of hair growth than the other wavelengths examined and 785 nm also showed a significant effect on hair growth.
For ex-vivo diabetic control, the voltammetric diagnosis of glucose (GU) was conducted with a modified carbon nanotube paste electrode, using handheld analytical circuits. The optimum analytical conditions were attained within the 0.5-4.0 ug/L working range and at the 0.06 ug/L detection limit, which system was interfaced to the feedback circuits and was applied to human urine for diabetic-patient diagnosis. It can be used for ex-vivo flow control analysis, vascular flow detection, and other medicinal assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.