HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Recently, the task of validating the authenticity of images and the localization of tampered regions has been actively studied. In this paper, we go one step further by providing solid evidence for image manipulation. If a certain image is proved to be the spliced image, we try to retrieve the original authentic images that were used to generate the spliced image. Especially for the image retrieval of spliced images, we propose a hybrid image-retrieval method exploiting Zernike moment and Scale Invariant Feature Transform (SIFT) features. Due to the symmetry and antisymmetry properties of the Zernike moment, the scaling invariant property of SIFT and their common rotation invariant property, the proposed hybrid image-retrieval method is efficient in matching regions with different manipulation operations. Our simulation shows that the proposed method significantly increases the retrieval accuracy of the spliced images.
The detection of earthquake signals is a fundamental yet challenging task in observational seismology. A robust automatic earthquake detection algorithm is strongly demanded in view of the ever‐growing global seismic dataset. Here, we develop an automatic earthquake detection framework based on a deep learning approach (SCALODEEP). It extracts high‐order features embedded in three‐component seismograms by encoding a time‐frequency representation of the data (scalogram) into a deep network with skip connections. The SCALODEEP is trained and validated on an open‐source dataset from North California, and then employed to seismicity detection in four areas, including Arkansas, Japan, Texas, and Egypt. Despite vastly varying characteristics of regional earthquakes (e.g., focal mechanism, duration, and noise level), SCALODEEP successfully detects seismic signals over a broad range of local magnitudes (as low as −1.3normalML) and outperforms conventional algorithms such as STA/LTA, FAST, and template matching. Compared to recently proposed deep learning based frameworks (e.g., CRED and Earthquake transformer), SCALODEEP achieves a superior generalization ability via a sophisticated network architecture. In summary, our study offers a promising new tool to improve existing earthquake detection systems and, as importantly, sheds light on designing an effective deep learning network for generalized earthquake detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.