Iris, fingerprint, and three-dimensional face recognition technologies used in mobile devices face obstacles owing to price and size restrictions by additional cameras, lighting, and sensors. As an alternative, two-dimensional face recognition based on the built-in visible-light camera of mobile devices has been widely used. However, face recognition performance is greatly influenced by the factors, such as facial expression, illumination, and pose changes. Considering these limitations, researchers have studied palmprint, touchless fingerprint, and finger-knuckle-print recognition using the built-in visible light camera. However, these techniques reduce user convenience because of the difficulty in positioning a palm or fingers on the camera. To consider these issues, we propose a biometric system based on a finger-wrinkle image acquired by the visible-light camera of a smartphone. A deep residual network is used to address the degradation of recognition performance caused by misalignment and illumination variation occurring during image acquisition. Owing to the unavailability of the finger-wrinkle open database obtained by smartphone camera, we built the Dongguk finger-wrinkle database, including the images from 33 people. The results show that the recognition performance by our method exceeds in those of conventional methods. INDEX TERMS Biometrics, finger-wrinkle recognition, smartphone camera, deep residual network.
Existing methods for iris, fingerprint, and 3D face recognition in mobile devices have constraints in terms of price and size owing to their use of additional cameras, lighting, and sensors. Additionally, visible light, camera-based 2D face recognition, palm print recognition, touchless fingerprint recognition, and finger knuckle print recognition are difficult to be used in mobile devices due to limitations in recognition performance and user inconvenience. In response to these problems, studies have been conducted on finger wrinkle recognition in mobile devices; however, image quality is often reduced by motion blurring caused by the movement of the camera or the user's finger, thereby reducing recognition performance. This study proposes a method for restoring and recognizing motion-blurred finger wrinkle images based on a generative adversarial network and deep convolutional neural network. Experiments were performed using two types of finger wrinkle databases, which were custom-made from images of 33 people captured by smart phone cameras (Dongguk mobile finger wrinkle database versions 1 and 2, denoted as DMFW-DB1 and DMFW-DB2, respectively). The results demonstrated high restoration and recognition performance in comparison with the state-of-the-art methods. INDEX TERMS Biometrics, finger wrinkle recognition, generative adversarial network (GAN), restoration of motion blurred image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.