We present LARNet, a novel end-to-end approach for generating human action videos. A joint generative modeling of appearance and dynamics to synthesize a video is very challenging and therefore recent works in video synthesis have proposed to decompose these two factors. However, these methods require a driving video to model the video dynamics. In this work, we propose a generative approach instead, which explicitly learns action dynamics in latent space avoiding the need of a driving video during inference. The generated action dynamics is integrated with the appearance using a recurrent hierarchical structure which induces motion at different scales to focus on both coarse as well as fine level action details. In addition, we propose a novel mix-adversarial loss function which aims at improving the temporal coherency of synthesized videos. We evaluate the proposed approach on four real-world human action datasets demonstrating the effectiveness of the proposed approach in generating human actions. Code available at https://github.com/aayushjr/larnet.
We have seen a great progress in video action recognition in recent years. There are several models based on convolutional neural network (CNN) with some recent transformer based approaches which provide state-of-the-art performance on existing benchmark datasets. However, robustness has not been studied for these models which is a critical aspect for real-world applications. In this work we perform a large-scale robustness analysis of these existing models for video action recognition. We mainly focus on robustness against distribution shifts due to real-world perturbations instead of adversarial perturbations. We propose four different benchmark datasets, HMDB-51P, UCF-101P, Kinetics-400P, and SSv2P and study the robustness of six different state-of-the-art action recognition models against 90 different perturbations. The study reveals some interesting findings, 1) transformer based models are consistently more robust against most of the perturbations when compared with CNN based models, 2) Pretraining helps Transformer based models to be more robust to different perturbations than CNN based models, and 3) All of the studied models are robust to temporal perturbation on the Kinetics dataset, but not on SSv2; this suggests temporal information is much more important for action label prediction on SSv2 datasets than on the Kinetics dataset. We hope that this study will serve as a benchmark for future research in robust video action recognition 1 .
Over the last several years, the field of Structured prediction in NLP has had seen huge advancements with sophisticated probabilistic graphical models, energy-based networks, and its combination with deep learning-based approaches. This survey provides a brief of major techniques in structured prediction and its applications in the NLP domains like parsing, sequence labeling, text generation, and sequence to sequence tasks. We also deep-dived into energy-based and attention-based techniques in structured prediction, identified some relevant open issues and gaps in the current state-of-the-art research, and have come up with some detailed ideas for future research in these fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.