Depression is one of the major side effects of interferon alpha (IFN-α) treatment, but the molecular mechanism underlying IFN-α-induced depression remains unclear. Several studies have shown that the serotonin receptors 5-HTR1b and 5-HTR4 play key roles in the anti-depression effects associated with p11 (S100A10). We investigated the effects of IFN-α on the regulation of p11, 5-HTR1b and 5-HTR4 in mice and human neuroblastoma cells (SH-sy5y). We found that intraperitoneal injection with IFN-α in Balb/c mice resulted in an increased immobility in FST and TST, and potently lowered the protein levels of p11, 5-HTR1b and 5-HTR4 in the hippocampus or cingulate gyrus. IFN-α significantly down-regulated the protein levels of p11, 5-HTR1b and 5-HTR4 in SH-sy5y cells, in a time- and dose-dependent manner. Our study revealed that over-expression of p11 could prevent the IFN-α-induced down-regulation of 5-HTR1b and 5-HTR4. The results indicated that IFN-α treatment resulted in p11 down-regulation, which subsequently decreased 5-HTR1b and 5-HTR4 in vitro or in vivo. Our findings suggested that p11 might be a potential regulator on 5-HTR1b and 5-HTR4 as well as a predictor of or a therapeutic target for IFN-α-induced depression.
Rationale: Neonatal alloimmune thrombocytopenia (NAIT) caused by anti HPA-3a antibody is rare, and the clinical features of the syndrome are not specific. Patient concerns: A male infant was noted to be irritable and physical examination revealed the presence of petechiae and bruising on the right arm and thigh after born. Diagnoses: Platelet antibodies were investigated using the monoclonal antibody-specific immobilization of platelet antigens (MAIPA) assay, platelet genotyping (HPA 1–17) was performed by polymerase chain reaction technique with sequence-specific primers (PCR-SSP). The HPA genotype of the newborn was HPA-3a/b, while that of his mother and his father were HPA-3b/b and HPA-3a/a, respectively. The sera of newborn contained antibody against the platelet of newborn's father. The HPA antibody of the newborn was identified as anti HPA-3a. The newborn was confirmed as a patient of NAIT caused by anti HPA-3a antibody. Interventions: A single dose of intravenous immunoglobulin (IVIG) 1 g/kg was administered from day 3 to day 7. Outcomes: At follow-up 3 months after discharge from the hospital, the baby was developing normally and had a normal platelet count (361 × 109/L). Lessons: NAIT caused by anti HPA-3a antibody is rare, and we believe this study can provide insights for diagnosing prospective cases. Prognosis of NAIT caused by HPA3a seems to be favorable if diagnosed and treated in a timely manner.
Background:Numerous studies have revealed aberrant DNA methylation in esophageal squamous cell carcinoma (ESCC). However, they often focused on the partial genome, which resulted in an inadequate understanding of the shaped methylation features and the lack of available methylation markers for this disease.Methods: The current study investigated the methylation profiles between ESCC and paired normal samples using whole-genome bisulfite sequencing (WGBS) data and obtained a group of differentially methylated CpGs (DMC), differentially methylated regions (DMR), and differentially methylated genes (DMG). The DMGs were then verified in independent datasets and Sanger sequencing in our custom samples. Finally, we attempted to evaluate the performance of these genes as methylation markers for the classification of ESCC and multiple cancer types.Results: We obtained 438,558 DMCs, 15,462 DMRs, and 1,568 DMGs. The four significantly enriched gene families of DMGs were CD molecules, NKL subclass, HOXL subclass, and Zinc finger C2H2-type. The HOXL subclass homeobox genes were observed extensively hypermethylated in ESCC and nine other cancer types. The HOXL-score estimated by HOXC10 and HOXD1 methylation showed good ability in discriminating ESCC from normal samples, while the methylation of GSX1 displayed potential utility for pan-cancer detection.Conclusions: We observed widespread hypomethylation events in ESCC, and the hypermethylated HOXL subclass homeobox genes presented promising applications for the early detection of multiple cancer types.
Background Numerous studies have revealed aberrant DNA methylation in esophageal squamous cell carcinoma (ESCC). However, they often focused on the partial genome, which resulted in an inadequate understanding of the shaped methylation features and the lack of available methylation markers for this disease. Methods The current study investigated the methylation profiles between ESCC and paired normal samples using whole-genome bisulfite sequencing (WGBS) data and obtained a group of differentially methylated CpGs (DMC), differentially methylated regions (DMR), and differentially methylated genes (DMG). The DMGs were then verified in independent datasets and Sanger sequencing in our custom samples. Finally, we attempted to evaluate the performance of these genes as methylation markers for the classification of ESCC. Results We obtained 438,558 DMCs, 15,462 DMRs, and 1568 DMGs. The four significantly enriched gene families of DMGs were CD molecules, NKL subclass, HOXL subclass, and Zinc finger C2H2-type. The HOXL subclass homeobox genes were observed extensively hypermethylated in ESCC. The HOXL-score estimated by HOXC10 and HOXD1 methylation, whose methylation status were then confirmed by sanger sequencing in our custom ESCC samples, showed good ability in discriminating ESCC from normal samples. Conclusions We observed widespread hypomethylation events in ESCC, and the hypermethylated HOXL subclass homeobox genes presented promising applications for the early detection of esophageal squamous cell carcinoma.
BackgroundNumerous studies have revealed aberrant DNA methylation in esophageal squamous cell carcinoma (ESCC). However, they often focused on the partial genome, which resulted in an inadequate understanding of the shaped methylation features and the lack of available methylation markers for this disease.MethodsThe current study investigated the methylation profiles between ESCC and paired normal samples using whole-genome bisulfite sequencing (WGBS) data and obtained a group of differentially methylated CpGs (DMC), differentially methylated regions (DMR), and differentially methylated genes (DMG). The DMGs were then verified in independent datasets and Sanger sequencing in our custom samples. Finally, we attempted to evaluate the performance of these genes as methylation markers for the classification of ESCC and multiple cancer types.ResultsWe obtained 438,558 DMCs, 15,462 DMRs, and 1,568 DMGs. The four significantly enriched gene families of DMGs were CD molecules, NKL subclass, HOXL subclass, and Zinc finger C2H2-type. The HOXL subclass homeobox genes were observed extensively hypermethylated in ESCC and nine other cancer types. The HOXL-score estimated by HOXC10 and HOXD1 methylation showed good ability in discriminating ESCC from normal samples, while the methylation of GSX1 displayed potential utility for pan-cancer detection.ConclusionsWe observed widespread hypomethylation events in ESCC, and the hypermethylated HOXL subclass homeobox genes presented promising applications for the early detection of multiple cancer types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.