The Japanese wolf (Canis lupus hodophilax Temminck, 1839) was a subspecies of the gray wolf that inhabited the Japanese Archipelago and became extinct 100-120 years ago. In this study, we determined the whole genomes of nine Japanese wolves from the 19th- early 20th centuries and 11 Japanese dogs and analyzed them along with both modern and ancient wolves and dogs. Genomic analyses indicate that the Japanese wolf was a unique subspecies of the gray wolf that was genetically distinct from both modern and ancient gray wolves, lacking gene flow with other gray wolves. A Phylogenetic tree that minimizes the effects of introgression shows that Japanese wolves are closest to the dog monophyletic group among the gray wolves. Moreover, Japanese wolves show significant genetic affinities with East Eurasian dogs. We estimated the level of introgression from the ancestor of the Japanese wolves to the ancestor of East Eurasian dogs that had occurred in the transitional period from the Pleistocene to the Holocene, at an early stage after divergence from West Eurasian dog lineages. Because of this introgression, Japanese wolf ancestry has been inherited by many dogs through admixture between East Eurasian dog lineages. As a result of this heredity, up to 5.5% of modern dog genomes throughout East Eurasia are derived from Japanese wolf ancestry.
Human skin is morphologically and physiologically different from the skin of other primates. However, the genetic causes underlying human-specific skin characteristics remain unclear. Here, we quantitatively demonstrate that the epidermis and dermis of human skin are significantly thicker than those of three Old World monkey species. In addition, we indicate that the topography of the epidermal basement membrane zone shows a rete ridge in humans but is flat in the Old World monkey species examined. Subsequently, we comprehensively compared gene expression levels between human and nonhuman great ape skin using next-generation cDNA sequencing (RNA-Seq). We identified four structural protein genes associated with the epidermal basement membrane zone or elastic fibers in the dermis ( COL18A1 , LAMB2 , CD151 , and BGN ) that were expressed significantly greater in humans than in nonhuman great apes, suggesting that these differences may be related to the rete ridge and rich elastic fibers present in human skin. The rete ridge may enhance the strength of adhesion between the epidermis and dermis in skin. This ridge, along with a thick epidermis and rich elastic fibers might contribute to the physical strength of human skin with a low amount of hair. To estimate transcriptional regulatory regions for COL18A1 , LAMB2 , CD151 , and BGN , we examined conserved noncoding regions with histone modifications that can activate transcription in skin cells. Human-specific substitutions in these regions, especially those located in binding sites of transcription factors which function in skin, may alter the gene expression patterns and give rise to the human-specific adaptive skin characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.