Covalent labeling of target proteins in living cells is useful for both fluorescence live-cell imaging and the subsequent biochemical analyses of the proteins. Here, we report an efficient method for the amine labeling of membrane proteins on the cell surface, guided by a noncovalent coiled-coil interaction. A carboxyl sulfosuccinimidyl ester introduced at the C-terminus of the coiled-coil probe reacted with target proteins under mild labeling conditions ([probe] = 150 nM, pH 7.4, 25°C) for 20 min. Various fluorescent moieties with different hydrophobicities are available for covalent labeling with high signal/background labeling ratios. Using this method, oligomeric states of glycophorin A (GpA) were compared in mammalian CHO-K1 cells and sodium dodecyl sulfate (SDS) micelles. In the cell membranes, no significant self-association of GpA was detected, whereas SDS-PAGE suggested partial dimerization of the proteins. Membrane cholesterol was found to be an important factor that suppressed the dimerization of GpA. Thus, the covalent functionality enables direct comparison of the oligomeric state of membrane proteins under various conditions. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 484-490, 2016.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.