Occludin is the first identified integral protein for the tight junction (TJ), and its long COOH-terminal domain is considered to have functions in receiving and transmitting cell survival signals. Loss of TJ-associated molecules, such as occludin, has been correlated with tumor progression in carcinogenesis; however, the precise molecular mechanisms explaining its loss of expression and whether occludin expression has any effects on cancer phenotypes remain to be clarified. Here, we show that forced expression of occludin in cancer cells exhibits enhanced sensitivity to differently acting apoptogenic factors, and thus inhibits the tumorigenicity of transformed cells, via modulation of unique sets of apoptosis-associated genes. In addition, studies using deletion mutants of occludin constructs show that 44 amino acids at the COOH-terminal end play a critical role in modifying the cellular phenotypes. Interestingly, occludin decreases cellular invasiveness and motility, thereby abrogating metastatic potencies of cancer cells. We also found that occludin expression is silenced by CpG island hypermethylation on its promoter region. Synergy with a demethylator and histone deacetylase inhibitor or retinoids that stimulate retinoic acid receptor A induces endogenous occludin, which is sufficient for apoptotic sensitization. Our results show the functional diversity of occludin and suggest that methylator phenotype of occludin provides enhanced tumorigenic, invasive, and metastatic properties of cancer cells, identifying occludin as a likely candidate for a tumor-suppressor gene in certain types of cancer. (Cancer Res 2006; 66(18): 9125-33)
The epithelial barrier is determined primarily by intercellular tight junctions (TJs). We have demonstrated previously that all-trans retinoic acid (atRA) plays an important role in forming functional TJs through a specific retinoic acid receptor (RAR)/ retinoid X receptor heterodimer in epithelial cells. However, the physiological relevance of retinoic acids (RAs) in maintaining the epithelial integrity remains to be examined. Here, we show that several types of RA, including atRA, promote the barrier function of epithelial TJs. Conversely, RA depletion in the cells by overexpressing CYP26s, cytochrome P450 enzymes specifically involved in the metabolic inactivation of RAs, induces an increase of permeability as measured by two differently sized tracer molecules, inulin and mannitol. This RA-mediated enhancement of barrier function is potentially associated with the increased expression of TJ-associated genes such as occludin, claudin-1, claudin-4, and zonula occludens-1. We also found that RAR␣ is a preferential regulator of the epithelial barrier in vitro. Studies of murine experimental colitis, which is characterized by increased gut permeability, reveal that RAR␣ stimulation significantly attenuates the loss of the epithelial barrier during colitis in vivo. Our results suggest that cellular RA bioavailability determines the epithelial integrity, because it is a critical regulator for barrier protection during mucosal injuries.
The blood-retinal barrier (BRB) is a biological unit comprised of specialized capillary endothelial cells firmly connected by intercellular tight junctions and endotheliumsurrounding glial cells. The BRB is essential for maintaining the retinal microenvironment and low permeability and is compromised in an early phase during the progression of diabetic retinopathy. Here, we demonstrate that retinoic acid receptor (RAR)␣ stimulants preferentially act on glial cells rather than endothelial cells, resulting in the enhanced expression of glial cell line-derived neurotrophic factor (GDNF) through recruitment of the RAR␣-driven trans-acting coactivator to the 5-flanking region of the gene promoter. Conversely, RAR␣ decreases expression of vascular endothelial growth factor (VEGF)/vascular permeability factor. These gene expression alterations causally limit vascular permeability by modulating the tight junction function of capillary endothelium in a paracrine manner in vitro. The phenotypic transformation of glial cells mediated by RAR␣ is sufficient for significant reductions of vascular leakage in the diabetic retina, suggesting that RAR␣ antagonizes the loss of tight junction integrity induced by diabetes. These findings reveal that glial cell-derived cytokines such as GDNF and VEGF regulate BRB function, implying that the glial cell can be a possible therapeutic target in diabetic retinopathy. Diabetes
We have previously demonstrated that epigenetic silencing of occludin, a tight junction-associated membrane protein, results in the acquisition of apoptotic resistance to various apoptogenic stimuli, causally contributing to the enhanced tumorigenicity of cancer cells. However, it remains to be examined whether occludin expression in transformed cells has an alternative impact that is important for cancer progression. Here we show that forced expression of occludin induces anoikis and promotes oxidative stress-induced premature senescence in breast carcinoma cells, which is accompanied by up-regulation of negative cell cycle regulators such as p16, and p27 Kip1, but not p53. The senescent phenotype is reversed by specific inhibition of mitogen-activated protein kinase.Endogenous reexpression of occludin mediated by a synergistic effect with a demethylator and histone deacetylase inhibitor or retinoids that stimulate retinoic acid receptor is also sufficient for provoking the senescent phenotype. In addition, tumors that developed from occludin-expressing cells in mice showed a feature of cellular senescence that has not been described as a consequence of occludin signaling. These findings suggest that the loss of occludin expression is at least partially involved in the senescence-escape program during mammary tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.