High-speed atomic force microscopy (HS-AFM) is a powerful emerging technique used to gain insight into real-time nanoscale dynamics and phenomena across the sciences. By performing measurements of material properties, abundancy counting and dimensional analysis, it enables a new generation of discoveries at the atomic scale. Here, we demonstrate the use of an optical pickup unit (OPU) typically found in PCs, Hi-Fis and games consoles worldwide, as a vertical detection system within in a HS-AFM operated in contact mode. The OPU displacement performance is compared to that of a commercially available laser Doppler vibrometer with ±15 pm resolution. Sub-nanometre sensitivity is achieved with an OPU, presented via the identification of two resonant modes of a cantilever stimulated by ambient thermal excitation. To demonstrate the large dynamic range of the sensor at fast scan-speeds, surface profiles with step heights in excess of 100 nm and surface textures less than 10 nm were collected using a custom OPU based HS-AFM. The high fidelity measurements are extended to visible length scales in short timescales by imaging areas of up to 200 µm 2 area at a pixel rate of 2 megapixels/s, tip velocity of 10 mm/s and area rate of 25 µm 2 /s.
General rightsThis document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms A Calibration Method for the Higher Modes of a Micro-mechanical Cantilever Micro-mechanical cantilevers are increasingly being used as a characterisation tool in both material and biological sciences. New non-destructive applications are being developed that rely on the information encoded within the cantilever's higher oscillatory modes, such as AFM techniques that measure non-topographic properties of a sample. However, these methods require the spring constants of the cantilever at higher modes to be known in order to quantify their results. Here, we show how to calibrate the micro-mechanical cantilever and find the effective spring constant of any mode. The method is uncomplicated to implement, using only properties of the cantilever and the fundamental mode that are straightforward to measure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.