Abstract. The possibility of approximating a continuous function on a compact subset of the real line by a feedforward single hidden layer neural network with a sigmoidal activation function has been studied in many papers. Such networks can approximate an arbitrary continuous function provided that an unlimited number of neurons in a hidden layer is permitted. In this paper, we consider constructive approximation on any finite interval of R by neural networks with only one neuron in the hidden layer. We construct algorithmically a smooth, sigmoidal, almost monotone activation function σ providing approximation to an arbitrary continuous function within any degree of accuracy. This algorithm is implemented in a computer program, which computes the value of σ at any reasonable point of the real axis.
Abstract. Feedforward neural networks have wide applicability in various disciplines of science due to their universal approximation property. Some authors have shown that single hidden layer feedforward neural networks (SLFNs) with fixed weights still possess the universal approximation property provided that approximated functions are univariate. But this phenomenon does not lay any restrictions on the number of neurons in the hidden layer. The more this number, the more the probability of the considered network to give precise results. In this note, we constructively prove that SLFNs with the fixed weight 1 and two neurons in the hidden layer can approximate any continuous function on a compact subset of the real line. The applicability of this result is demonstrated in various numerical examples. Finally, we show that SLFNs with fixed weights cannot approximate all continuous multivariate functions.
Abstract. Inverse problems of recovering the coefficients of Sturm-Liouville problems with the eigenvalue parameter linearly contained in one of the boundary conditions are studied: 1) from the sequences of eigenvalues and norming constants; 2) from two spectra.Necessary and sufficient conditions for the solvability of these inverse problems are obtained.
We algorithmically construct a two hidden layer feedforward neural network (TLFN) model with the weights fixed as the unit coordinate vectors of the d-dimensional Euclidean space and having 3d + 2 number of hidden neurons in total, which can approximate any continuous d-variable function with an arbitrary precision. This result, in particular, shows an advantage of the TLFN model over the single hidden layer feedforward neural network (SLFN) model, since SLFNs with fixed weights do not have the capability of approximating multivariate functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.