PI3K (phosphoinositide 3-kinase) alpha has been implicated in phagocytosis and fluid-phase pinocytosis in macrophages. The subtype-specific role of PI3K in these processes is poorly understood. To elucidate this issue, we made Raw 264.7 cells (a mouse leukaemic monocyte-macrophage cell line) deficient in each of the class-I PI3K catalytic subunits: p110alpha, p110beta, p110delta and p110gamma. Among these cells, only the p110alpha-deficient cells exhibited lower phagocytosis of opsonized and non-opsonized zymosan. The p110alpha-deficient cells also showed the impaired phagocytosis of IgG-opsonized erythrocytes and the impaired fluid-phase pinocytosis of dextran (molecular mass of 40 kDa). Receptor-mediated pinocytosis of DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate)-labelled acetylated low-density lipoprotein and fluid-phase pinocytosis of Lucifer Yellow (molecular mass of 500 Da) were resistant to p110alpha depletion. None of these processes were impaired in cells lacking p110beta, p110delta or p110gamma, but were susceptible to a pan-PI3K inhibitor wortmannin. In cells deficient in the enzymes catalysing PtdIns(3,4,5)P3 breakdown [PTEN (phosphatase and tensin homologue deleted on chromosome 10) or SHIP-1 (Src-homology-2-domain-containing inositol phosphatase-1)], uptake of IgG-opsonized particles was enhanced. These results indicated that phagocytosis and fluid-phase pinocytosis of larger molecules are dependent on the lipid kinase activity of p110alpha, whereas pinocytosis via clathrin-coated and small non-coated vesicles may depend on subtypes of PI3Ks other than class I.
Menadione (vitamin K(3)) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells. The phosphorylation of Akt by menadione was not inhibited by AG1478, an inhibitor of EGFR. Menadione inhibited the lipid phosphatase activity of PTEN in a cell-free system. In an intact cell system, menadione inhibited the effect of transfected PTEN on Akt. Thus, one mechanism of its action was considered the accelerated activation of Akt through inhibition of PTEN. This was not the sole mechanism responsible for the EGFR-independent activation of Akt, because menadione attenuated the rate of Akt dephosphorylation even in PTEN-null PC3 cells. The decelerated inactivation of Akt, probably through inhibition of some tyrosine phosphatases, was considered another mechanism of its action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.