Scene image or video understanding is a challenging task especially when number of video types increases drastically with high variations in background and foreground. This paper proposes a new method for categorizing scene videos into different classes, namely, Animation, Outlet, Sports, e-Learning, Medical, Weather, Defense, Economics, Animal Planet and Technology, for the performance improvement of text detection and recognition, which is an effective approach for scene image or video understanding. For this purpose, at first, we present a new combination of rough and fuzzy concept to study irregular shapes of edge components in input scene videos, which helps to classify edge components into several groups. Next, the proposed method explores gradient direction information of each pixel in each edge component group to extract stroke based features by dividing each group into several intra and inter planes. We further extract correlation and covariance features to encode semantic features located inside planes or between planes. Features of intra and inter planes of groups are then concatenated to get a feature matrix. Finally, the feature matrix is verified with temporal frames and fed to a neural network for categorization. Experimental results show that the proposed method outperforms the existing state-of-the-art methods, at the same time, the performances of text detection and recognition methods are also improved significantly due to categorization.
This article proposes a new method to estimate an existing mutual information based dependence measure using histogram density estimates. Finding a suitable bin length for histogram is an open problem. We propose a new way of computing the bin length for histogram using a function of maximum separation between points. The chosen bin length leads to consistent density estimates for histogram method. The values of density thus obtained are used to calculate an estimate of an existing dependence measure. The proposed estimate is named as MIDI (Mutual Information based Dependence Index). Some important properties of MIDI have also been stated.The performance of the proposed method has been compared to generally accepted measures like distance correlation (dcor), Maximal Information Coefficient (MINE) in terms of accuracy and computational complexity with the help of several artificial data sets with different amounts of noise. The proposed method is able to detect many types of relationships between variables, without making any assumption about the functional form of the relationship. The power statistics of proposed method illustrate their effectiveness in detecting non linear relationship. Thus, it is able to achieve generality without a high rate of false positive cases. MIDI is found to work better on a real life data set than competing methods. The proposed method is found to overcome some of the limitations which occur with dcor and MINE. Computationally, MIDI is found to be better than dcor and MINE, in terms of time and memory, making it suitable for large data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.