We report construction of a genetic linkage map of the guppy genome using 790 single nucleotide polymorphism markers, integrated from six mapping crosses. The markers define 23 linkage groups (LGs), corresponding to the known haploid number of guppy chromosomes. The map, which spans a genetic length of 899 cM, includes 276 markers linked to expressed genes (expressed sequence tag), which have been used to derive broad syntenic relationships of guppy LGs with medaka chromosomes. This combined linkage map should facilitate the advancement of genetic studies for a wide variety of complex adaptive phenotypes relevant to natural and sexual selection in this species. We have used the linkage data to predict quantitative trait loci for a set of variable male traits including size and colour pattern. Contributing loci map to the sex LG for many of these traits.
Sex chromosomes differ from autosomes by dissimilar gene content and, at a more advanced stage of their evolution, also in structure and size. This is driven by the divergence of the Y or W from their counterparts, X and Z, due to reduced recombination and the resulting degeneration as well as the accumulation of sex-specific and sexually antagonistic genes. A paradigmatic example for Y-chromosome evolution is found in guppies. In these fishes, conflicting data exist for a morphological and molecular differentiation of sex chromosomes. Using molecular probes and the previously established linkage map, we performed a cytogenetic analysis of sex chromosomes. We show that the Y chromosome has a very large pseudoautosomal region, which is followed by a heterochromatin block (HCY) separating the subtelomeric male-specific region from the rest of the chromosome. Interestingly, the size of the HCY is highly variable between individuals from different population. The largest HCY was found in one population of Poecilia wingei, making the Y almost double the size of the X and the largest chromosome of the complement. Comparative analysis revealed that the Y chromosomes of different guppy species are homologous and share the same structure and organization. The observed size differences are explained by an expansion of the HCY, which is due to increased amounts of repetitive DNA. In one population, we observed also a polymorphism of the X chromosome. We suggest that sex chromosome-linked color patterns and other sexually selected genes are important for maintaining the observed structural polymorphism of sex chromosomes.
Identification of genes that control variation in adaptive characters is a prerequisite for understanding the processes that drive sexual and natural selection. Male coloration and female colour perception play important roles in mate choice in the guppy (Poecilia reticulata), a model organism for studies of natural and sexual selection. We examined a potential source for the known variation in colour perception, by analysing genomic and complementary DNA sequences of genes that code for visual pigment proteins. We find high sequence variability, both within and between populations, and expanded copy number for long-wave sensitive (LWS) opsin genes. Alleles with non-synonymous changes that suggest dissimilar spectral tuning properties occur in the same population and even in the same individual, and the high frequency of non-synonymous substitutions argues for diversifying selection acting on these proteins. Therefore, variability in tuning amino acids is partitioned within individuals and populations of the guppy, in contrast to variability for LWS at higher taxonomic levels in cichlids, a second model system for differentiation owing to sexual selection. Since opsin variability parallels the extreme male colour polymorphism within guppy populations, we suggest that mate choice has been a major factor driving the coevolution of opsins and male ornaments in this species.
Among different teleost fish species, diverse sex-determining mechanisms exist, including environmental and genetic sex determination, yet chromosomal sex determination with male heterogamety (XY) prevails. Different pairs of autosomes have evolved as sex chromosomes among species in the same genus without evidence for a master sex-determining locus being identical. Models for evolution of Y chromosomes predict that male-advantageous genes become linked to a sex-determining locus and suppressed recombination ensures their co-inheritance. In the guppy, Poecilia reticulata, a set of genes responsible for adult male ornaments are linked to the sex-determining locus on the incipient Y chromosome. We have identified .60 sex-linked molecular markers to generate a detailed map for the sex linkage group of the guppy and compared it with the syntenic autosome 12 of medaka. We mapped the sex-determining locus to the distal end of the sex chromosome. We report a sex-biased distribution of recombination events in female and male meiosis on sex chromosomes. In one mapping cross, we observed sex ratio and male phenotype deviations and propose an atypical mode of genetic sex inheritance as its basis.
Male ornamental traits of the guppy, Poecilia reticulata, provide an outstanding example of natural variation in sex-linked male-advantageous traits that are shaped by both sexual and environmental selection. A substantial fraction of the underlying genes is known to be genetically linked to the sex-determining region on the differentiating Y-chromosome. Intercrosses between parental populations originating from geographically distant locations in East Trinidad and Cumaná (Venezuela) were used to study segregation of ornamental traits in male progeny. In addition, we performed backcrosses to compare segregation of ornaments in presence or absence of prominent traits linked to the Y-chromosome. Another backcross strategy involving XY females from the laboratory strain zebrinus maculatus allowed studying additive and dominant effects of alleles on two different Y-chromosomes on pattern formation. For genetic mapping, we have previously developed nuclear SNP markers linked to expressed genes, including several genes known to be important for pattern formation in other species. Of these candidate genes 15 were placed on 11 different linkage groups. Our phenotypic and genotypic analysis of progeny from mapping crosses and backcrosses suggests several genetic mechanisms that enhance natural variation, namely, additive effects of codominant alleles, suppressive actions of dominant alleles, and a complex interplay between sex-linked and autosomal cofactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.