Massive connectivity is a key to the success of the Internet of Things. While mmWave backscatter has great potential, substantial signal attenuation and overwhelming ambient reflections impose significant challenges. We present OmniScatter, a practical mmWave backscatter with an extreme sensitivity of -115 dBm. The performance is theoretically comparable to the popular commodity RFID EPC Gen2 (900 MHz), and is empirically validated via evaluations under various practical settings with abundant ambient reflections and blockages -e.g., In an office where a tag is locked in a wooden closet 6m away, as well in libraries and retail stores where a tag is placed across two rows of metal shelves. At the heart of OmniScatter is the new High Definition FMCW (HD-FMCW), which interplays with the tag (FSK) signal to disentangle the ambient reflections from the tag signal in the frequency domain, essentially offering immunity to ambient reflections. To further support practical deployment, OmniScatter offers coordination-free Frequency Division Multiple Access (FDMA) that effortlessly scales to thousands of concurrent tags. The readers were built on commodity radars and the tags were prototyped on PCB. The trace-driven evaluation demonstrates concurrent communication of 1100 tags with the BER < 1.5%, paving a pathway towards practical mmWave backscatter for everyday and anywhere use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.