To hide a metallic object from outside observers, we designed cloaking structures to manipulate the propagation path of the microwave at a specific frequency. Dielectric materials are used to realize the cloaking effect and their electromagnetic properties are evaluated to reduce the size of the cloaking structure as well as to take the loss effect into account. We used the structural design method based on the phase field method to control the electric field flow around a target object for cloaking. It is aimed to minimize the scattered electric field measured at the region located behind the target object for a normal incident wave in the X-band frequency range. Numerical examples are given to verify the suggested design process and its results.
Common dielectric metamaterials for electromagnetic (EM) interference shielding, stealth applications, and EM cloaking generally require larger thicknesses than the wavelength of incidence light. We propose an all-dielectric metamaterial inspired structure using a systematic approach based on the phase field design method. The structure is composed of periodically arranged unit structures that have a 2D configuration, which is sub-wavelength thick over its entire structure. The proposed structure provides anomalous reflections to prevent reflections back toward the wave source and is anti-penetrative over the microwave band with no conductive materials. We digitally fabricated the designed structure using 3D printing and verified the design specifications by experiments.
In spite of rapidly increasing demand and various applications of infrared (IR) detectors, their design process for the performance improvement has been mostly dependent on researchers' intuition and knowledge. We present two-dimensional unit structure design of the absorbing layer in IR detectors. A systematic approach is introduced to enhance the absorbing efficiency of incident beam in the near-infrared wavelength range. We derived a layered structure composed of a silicon nitride (Si₃N₄) layer and an amorphous silicon (a-Si) one in turn by the so called topology optimization in association with the time variant finite element analysis (FEA). It is confirmed that thickness at each layer is in associated with the IR wavelength so that detail dimensions of each layer are inferred. A prototype of the layered structure was fabricated and its performance has been verified through experimental measurement.
In this paper, infrared reflector design targeting infrared stealth effect is presented using structural optimization based on the phase field method. The analysis model was determined to accomplish the design that an incident infrared wave was reflected to a desired direction. The design process was to maximize the objective value at the measuring domain located in a target region and the design objective was set to the Poynting vector value which represents the energy flux. Optimization results were obtained according to the variation of some parameter values related to the phase field method. The model with a maximum objective value was selected as the final optimal model. The optimal model was modified to eliminate the gray scale using the cut-off method and it confirmed improved performance. In addition, to check the desired effect in the middle wave infrared range(MWIR), the analysis was performed by changing the input wavelength. The finite element analysis and optimization process were performed by using the commercial package COMSOL combined with the Matlab programming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.