Chunking means splitting the sentences into tokens and then grouping them in a meaningful way. When it comes to high-performance chunking systems, transformer models have proved to be the state of the art benchmarks. To perform chunking as a task it requires a large-scale high quality annotated corpus where each token is attached with a particular tag similar as that of Named Entity Recognition Tasks. Later these tags are used in conjunction with pointer frameworks to find the final chunk. To solve this for a specific domain problem, it becomes a highly costly affair in terms of time and resources to manually annotate and produce a large-high-quality training set. When the domain is specific and diverse, then cold starting becomes even more difficult because of the expected large number of manually annotated queries to cover all aspects. To overcome the problem, we applied a grammar-based text generation mechanism where instead of annotating a sentence we annotate using grammar templates. We defined various templates corresponding to different grammar rules. To create a sentence we used these templates along with the rules where symbol or terminal values were chosen from the domain data catalog. It helped us to create a large number of annotated queries. These annotated queries were used for training the machine learning model using an ensemble transformer-based deep neural network model [24.] We found that grammar-based annotation was useful to solve domain-based chunks in input query sentences without any manual annotation where it was found to achieve a classification F1 score of 96.97% in classifying the tokens for the out of template queries.
Transformer Models have taken over most of the Natural language Inference tasks. In recent times they have proved to beat several benchmarks. Chunking means splitting the sentences into tokens and then grouping them in a meaningful way. Chunking is a task that has gradually moved from POS tag-based statistical models to neural nets using Language models such as LSTM, Bidirectional LSTMs, attention models, etc. Deep neural net Models are deployed indirectly for classifying tokens as different tags defined under Named Recognition Tasks. Later these tags are used in conjunction with pointer frameworks for the final chunking task. In our paper, we propose an Ensemble Model using a fine-tuned Transformer Model and a recurrent neural network model together to predict tags and chunk substructures of a sentence. We analyzed the shortcomings of the transformer models in predicting different tags and then trained the BILSTM+CNN accordingly to compensate for the same.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.