Abstract-We study the problem of reconstructing a sparse signal from a limited number of its linear projections when a part of its support is known, although the known part may contain some errors. The "known" part of the support, denoted T , may be available from prior knowledge. Alternatively, in a problem of recursively reconstructing time sequences of sparse spatial signals, one may use the support estimate from the previous time instant as the "known" part. The idea of our proposed solution (modified-CS) is to solve a convex relaxation of the following problem: find the signal that satisfies the data constraint and is sparsest outside of T . We obtain sufficient conditions for exact reconstruction using modified-CS. These are much weaker than those needed for compressive sensing (CS) when the sizes of the unknown part of the support and of errors in the known part are small compared to the support size. An important extension called Regularized Modified-CS (RegModCS) is developed which also uses prior signal estimate knowledge. Simulation comparisons for both sparse and compressible signals are shown.
Abstract-We study the problem of reconstructing a sparse signal from a limited number of its linear projections when a part of its support is known, although the known part may contain some errors. The "known" part of the support, denoted T , may be available from prior knowledge. Alternatively, in a problem of recursively reconstructing time sequences of sparse spatial signals, one may use the support estimate from the previous time instant as the "known" part. The idea of our proposed solution (modified-CS) is to solve a convex relaxation of the following problem: find the signal that satisfies the data constraint and is sparsest outside of T . We obtain sufficient conditions for exact reconstruction using modified-CS. These are much weaker than those needed for compressive sensing (CS) when the sizes of the unknown part of the support and of errors in the known part are small compared to the support size. An important extension called Regularized Modified-CS (RegModCS) is developed which also uses prior signal estimate knowledge. Simulation comparisons for both sparse and compressible signals are shown.
We consider the problem of reconstructing time sequences of spatially sparse signals (with unknown and time-varying sparsity patterns) from a limited number of linear "incoherent" measurements, in real-time. The signals are sparse in some transform domain referred to as the sparsity basis. For a single spatial signal, the solution is provided by Compressed Sensing (CS). The question that we address is, for a sequence of sparse signals, can we do better than CS, if (a) the sparsity pattern of the signal's transform coefficients' vector changes slowly over time, and (b) a simple prior model on the temporal dynamics of its current non-zero elements is available. The overall idea of our solution is to use CS to estimate the support set of the initial signal's transform vector. At future times, run a reduced order Kalman filter with the currently estimated support and estimate new additions to the support set by applying CS to the Kalman innovations or filtering error (whenever it is "large").
Abstract-This work studies the recursive robust principal components analysis (PCA) problem. If the outlier is the signalof-interest, this problem can be interpreted as one of recursively recovering a time sequence of sparse vectors, St, in the presence of large but structured noise, Lt. The structure that we assume on Lt is that Lt is dense and lies in a low dimensional subspace that is either fixed or changes "slowly enough." A key application where this problem occurs is in video surveillance where the goal is to separate a slowly changing background (Lt) from moving foreground objects (St) on-the-fly. To solve the above problem, in recent work, we introduced a novel solution called Recursive Projected CS (ReProCS). In this work we develop a simple modification of the original ReProCS idea and analyze it. This modification assumes knowledge of a subspace change model on the Lt's. Under mild assumptions and a denseness assumption on the unestimated part of the subspace of Lt at various times, we show that, with high probability (w.h.p.), the proposed approach can exactly recover the support set of St at all times; and the reconstruction errors of both St and Lt are upper bounded by a time-invariant and small value. In simulation experiments, we observe that the last assumption holds as long as there is some support change of St every few frames.
Abstract-We consider the problem of recursively and causally reconstructing time sequences of sparse signals (with unknown and time-varying sparsity patterns) from a limited number of noisy linear measurements. The sparsity pattern is assumed to change slowly with time. The key idea of our proposed solution, LS-CS-residual (LS-CS), is to replace compressed sensing (CS) on the observation by CS on the least squares (LS) residual computed using the previous estimate of the support. We bound CS-residual error and show that when the number of available measurements is small, the bound is much smaller than that on CS error if the sparsity pattern changes slowly enough. Most importantly, under fairly mild assumptions, we show "stability" of LS-CS over time for a signal model that allows support additions and removals, and that allows coefficients to gradually increase (decrease) until they reach a constant value (become zero). By "stability," we mean that the number of misses and extras in the support estimate remain bounded by time-invariant values (in turn implying a time-invariant bound on LS-CS error). Numerical experiments, and a dynamic MRI example, backing our claims are shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.