Cutaneous cells primarily depend upon carbohydrate metabolism for their energy requirement during healing process. But, it may be greatly hampered during various pathological and altered physiological conditions. The present study was therefore undertaken to investigate the intermediate steps of energy metabolism by measuring enzyme activities in the granulation tissues of immunocompromised and aged rats following excision-type of cutaneous injury. The activities of key regulatory enzymes hexokinase (HK), phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and glucose-6 phosphate dehydrogenase (G6PD) have been monitored in the wound tissues of immunocompromised and aged rats at different time intervals (2, 7, 14 and 21 days) of postwounding. The activities of HK and CS were found significantly decreased both in immunocompromised and aged rats as compared to control subjects. However G6PD exhibited an elevated activity at early stage followed by a decreased activity at later phase of healing both in immunocompromised and aged rats. The PFK and LDH demonstrated an upward trend in immunocompromised rats but a decreasing trend in aged rats. Thus, the results suggest that significant alterations in the activities of energy metabolizing enzymes in the granulation tissues in both immunocompromised as well as in aged rats may overall affect the energy availability for cellular activity needed for repair process. Hence, this may perhaps be one of the factor responsible for impaired healing in these subjects.
The striatal-enriched phosphatase (STEP) is a component of the NMDA-receptor-mediated excitotoxic signaling pathway, which plays a key role in ischemic brain injury. Using neuronal cultures and a rat model of ischemic stroke, we show that STEP plays an initial role in neuroprotection, during the insult, by disrupting the p38 MAPK pathway. Degradation of active STEP during reperfusion precedes ischemic brain damage and is associated with secondary activation of p38 MAPK. Application of a cell-permeable STEP-derived peptide that is resistant to degradation and binds to p38 MAPK protects cultured neurons from hypoxia-reoxygenation injury and reduces ischemic brain damage when injected up to 6 h after the insult. Conversely, genetic deletion of STEP in mice leads to sustained p38 MAPK activation and exacerbates brain injury and neurological deficits after ischemia. Administration of the STEP-derived peptide at the onset of reperfusion not only prevents the sustained p38 MAPK activation but also reduces ischemic brain damage in STEP KO mice. The findings indicate a neuroprotective role of STEP and suggest a potential role of the STEP-derived peptide in stroke therapy.
Despite the outstanding clinical results of immune checkpoint blockade (ICB) in melanoma and other cancers, clinical trials in breast cancer have reported low responses to these therapies. Current efforts are now focused on improving the treatment efficacy of ICB in breast cancer using new combination designs such as molecularly targeted agents, including histone deacetylase inhibitors (HDACi). These epigenetic drugs have been widely described as potent cytotoxic agents for cancer cells. In this work, we report new noncanonical regulatory properties of ultra-selective HDAC6i over the expression and function of epithelial-mesenchymal transition pathways and the invasiveness potential of breast cancer. These unexplored roles position HDAC6i as attractive options to potentiate ongoing immunotherapeutic approaches. These new functional activities of HDAC6i involved regulation of the E-cadherin/STAT3 axis. Pretreatment of tumors with HDAC6i induced critical changes in the tumor microenvironment, resulting in improved effectiveness of ICB and preventing dissemination of cancer cells to secondary niches. Our results demonstrate for the first time that HDAC6i can both improve ICB antitumor immune responses and diminish the invasiveness of breast cancer with minimal cytotoxic effects, thus departing from the cytotoxicity-centric paradigm previously assigned to HDACi.Significance: Ultraselective HDAC6 inhibitors can reduce tumor growth and invasiveness of breast cancer by noncanonical mechanisms unrelated to the previously cytotoxic properties attributed to HDAC inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.