Ste5 is a scaffold for the mitogen-activated protein kinase (MAPK) cascade components in a yeast pheromone response pathway. Ste5 also associates with Ste4, the beta subunit of a heterotrimeric guanine nucleotide-binding protein, potentially linking receptor activation to stimulation of the MAPK cascade. A RING-H2 motif at the Ste5 amino terminus is apparently essential for function because Ste5(C177S) and Ste5(C177A C180A) mutants did not rescue the mating defect of a ste5Delta cell. In vitro Ste5(C177A C180A) bound each component of the MAPK cascade, but not Ste4. Unlike wild-type Ste5, the mutant did not appear to oligomerize; however, when fused to a heterologous dimerization domain (glutathione S-transferase), the chimeric protein restored mating in an ste5Delta cell and an ste4Delta ste5Delta double mutant. Thus, the RING-H2 domain mediates Ste4-Ste5 interaction, which is a prerequisite for Ste5-Ste5 self-association and signaling.
The gene cluster (ery) responsible for production of the macrolide antibiotic erythromycin by Saccharopolyspora erythraea is also known to contain ermE, the gene conferring resistance to the antibiotic. The nucleotide sequence has been determined of a 4.5 kb portion of the biosynthetic gene cluster, from a region lying between 3.7 kb and 8.2 kb 3' of ermE. This has revealed the presence of four complete open reading frames, including the previously known ery gene eryG, which catalyses the last step in the biosynthetic pathway. Comparison of the amino acid sequence of EryG with the sequence of other S-adenosylmethionine (SAM)-dependent methyltransferases has revealed that one of the sequence motifs previously suggested to be part of the SAM-binding site is present not only in EryG but also in many other recently sequenced SAM-dependent methyltransferases. Previous genetic studies have shown that this region also contains gene(s) involved in hydroxylation of the intermediate 6-deoxyerythronolide B. One of the three other open reading frames (eryF) in fact shows very high sequence similarity to known cytochrome P450 hydroxylases. An adjacent gene (ORF5) shows a strikingly high degree of similarity to prokaryotic and eukaryotic acyltransferases and thioesterases.
Silencing at HMR requires silencers, and one of the roles of the silencer is to recruit Sir proteins. This work focuses on the function of Sir1p once it is recruited to the silencer. We have generated mutants of Sir1p that are recruited to the silencer but are unable to silence, and we have utilized these mutants to identify four proteins, Sir3p, Sir4p, Esc2p, and Htz1p, that when overexpressed, restored silencing. The isolation of Sir3p and Sir4p validated this screen. Molecular analysis suggested that Esc2p contributed to silencing in a manner similar to Sir1p and probably helped recruit or stabilize the other Sir proteins, while Htz1p present at HMR assembled a specialized chromatin structure necessary for silencing.
The GCS1 gene of the budding yeast Saccharomyces cerevisiae mediate the resumption of cell proliferation from the starved, stationary-phase state. Here we identify yeast genes that, in increased dosages, overcome the growth defect of gcs1 delta mutant cells. Among these are YCK1 (CK12) and YCK2 (CKI1), encoding membrane-associated casein kinase I, and YCK3, encoding a novel casein kinase I isoform. Some Yck3p gene product was found associated with the plasma membrane, like Yck1p and Yck2p, but most confractionated with the nucleus, like another yeast casein kinase I isoform, Hrr25p. Genetic studies showed that YCK3 and HRR25 constitute an essential gene family and that Yck3p can weakly substitute for Yck1p-Yck2p. For gcs1 delta suppression, both a protein kinase domain and a C-terminal prenylation motif were shown to be necessary. An impairment in endocytosis was found for gcs1 delta mutant cells, which was alleviated by an increased YCK2 gene dosage. The ability of an increased casein kinase I gene dosage to suppress the effects caused by the absence of Gcs1p suggests that Gcs1p and Yck1p-Yck2p affect parallel pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.