Due to rapid eutrophication, sustainable water quality management and supply are essential in drinking water sources and aquatic biota in large reservoirs. We evaluated the potentially crucial factors influencing the algal chlorophyll (CHL-a), nutrients, and the links between the rainfall and other vital elements in a large multipurpose reservoir (Yongdam Reservoir) during 2013–2019. We developed the empirical models on algal CHL-a, total phosphorus (TP), total nitrogen (TN), and TN:TP’s ambient ratios considering the maneuvering influence of Asian monsoons. The intensive rainfall during the monsoon months strongly impacted the nutrient regime and other vital factors. The seasonal patterns of algal CHL-a varied in response to the nutrient contents (TN, TP), suspended solids, and ambient N:P ratios along the longitudinal gradient. The conditional plot analysis, empirical modeling, and observations supported an overall P-limitation scenario, as was evident from the magnitude of N:P ratios (R2 = 0.36, F = 24.9, p < 0.001). Furthermore, the reservoir’s trophic status alluded to the larger particles and blue-green algae during the monsoon and postmonsoon months. The correlation analysis, Mann–Kendall trend test, and principal component analysis illustrated compelling links between CHL-a, TP, and rainfall regime. The outcomes suggested the reservoir was primarily controlled by phosphorus limitation, with an increasing CHL-a tendency along with nitrogen dilution. However, a slight decline in phosphorus was also detected. The Yongdam Reservoir is under the threat of recurrent eutrophication events that could jeopardize this vital drinking water facility due to increasing agricultural and anthropic activities.
Functional trait and biological integrity approaches in stream ecology enable the determination and prediction of aquatic community responses to a variety of environmental stressors, such as chemical pollution, habitat disturbance, and biological invasion. Here, we used multi-trait based functional groups (FGs) to predict the functional responses of fish assemblages to the physicochemical and ecological health gradients in a temperate stream. The multi-metric biological integrity model (mIBI model) was used to evaluate stream ecological health. The FGs were derived from the distance matrix of trophic, tolerance, and physical habitat traits among fish species. The leading water quality indicators (conductivity [EC], total suspended solids [TSS], and chlorophyll-a [CHL-a]) varied conspicuously with the stream gradient and anthropogenic pollution. The multi-metric water-pollution index (mWPI) showed differences in chemical health from upstream to downstream. Monsoon precipitation may have affected the variations in fish species and associated changes linked to irregular chemical health. The fish FGs varied more by space (longitudinal) than by season (premonsoon and postmonsoon). Functional metrics, which reflected trophic and tolerance traits, as well as vertical position preference, were strongly correlated with water quality degradation downstream. Changes were evident in FG (II, III, and IV) combinations from the upstream to downstream reaches. Furthermore, the structure of the fish assemblages from FG-II and FG-III was significantly correlated with chemical (R2 = 0.43 and 0.35, p < 0.001) and ecological health (R2 = 0.69 and 0.66, p < 0.001), as well as the metrics of mWPI. In conclusion, the results indicate significant variations in both trait-based FGs and biological integrity among stream-fish communities, influenced by chemical water quality gradients. The causes included longitudinal zones and intensifying degradation of water quality downstream. Therefore, multi-trait based FGs can facilitate ecological health assessment and develop the mIBI model based on fish assemblages by reflecting the prevailing chemical health status of streams and rivers.
Trait-based functional studies are widely used to elucidate the relationships between ecological indicators and environmental parameters as well as to predict functional change in aquatic biota in response to various types of human disturbance. Clarifying how functional traits of aquatic organisms depend on environmental conditions can facilitate aquatic conservation and management, but determining the importance of these traits to ecological river health requires further investigation. As fish play a key role in the assessment of ecological conditions, we examined the relevance of the functional diversity of lotic fish to the river health assessment using multi-metric models of water pollution (mWPI) and fish-based biological integrity (mIBI). Twelve fish traits related to food acquisition, environmental stability, and mobility were used for the functional analyses. Chemical river health was highly sensitive to downstream organic matter and nutrient pollution according to mWPI. Based on the present gradient of chemical health and water chemical variables, we identified three water quality groups (G-I, G-II, and G-III). G-I, G-II, and G-III showed low, intermediate, and high levels of water quality degradation, respectively. Spatially significant differences among these groups were observed for both the taxonomic and functional structures of lotic fish as well as ecological river health based on mIBI. The dominance of sensitive species was high in G-I, whereas tolerant and exotic species contributed strongly to the species compositions of G-II and G-III. Functional richness and dispersal were significantly reduced in G-III, and their decreases correlated with ecological health and the loss of species that are insectivorous, rheophilic, and sensitive to water pollution. Regarding redundancy analyses, both the models of functional trait metrics (F = 8.06, p < 0.001) and mIBI metrics (F = 4.88, p < 0.01) indicated good performance in terms of the variation in water quality and chemical river health parameters. Overall, the functional trait-based diversity of lotic fish is significant to the assessment of ecological river health and reflects water chemical quality. This association arises because niche occupation in functional space by all species, along with their abundance distribution, is highly responsive to the loss of species with sensitive traits due to water pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.