The Kirsten rat sarcoma (KRAS) oncoprotein has been on drug hunters list for decades now. Initially considered undruggable, recent advances have successfully broken the jinx through covalent inhibition that exploits the mutated cys12 in the switch II binding pocket (KRASG12C). Though this approach has achieved some level of success, patients with mutations other than cys12 are still uncatered for. KRASG12D is the most frequent KRAS mutated oncoprotein. It is only until recently, MRTX1133 has been discovered as a potential inhibitor of KRASG12D. This study seeks to unravel the structural binding mechanism of MRTX1133 as well as identify potential drug leads of KRASG12D based on structural binding characteristics of MRTX1133. It was revealed that MRTX1133 binding stabilizes the binding site by increasing the hydrophobicity which resultantly induced positive correlated movements of switches I and II which could disrupt their interaction with effector and regulatory proteins. Furthermore, MRTX1133 interacted with critical residues; Asp69 (− 4.54 kcal/mol), His95 (− 3.65 kcal/mol), Met72 (− 2.27 kcal/mol), Thr58 (− 2.23 kcal/mol), Gln99 (− 2.03 kcal/mol), Arg68 (− 1.67 kcal/mol), Tyr96 (− 1.59 kcal/mol), Tyr64 (− 1.34 kcal/mol), Gly60 (− 1.25 kcal/mol), Asp12 (− 1.04 kcal/mol), and Val9 (− 1.03 kcal/mol) that contributed significantly to the total free binding energy of − 73.23 kcal/mol. Pharmacophore-based virtual screening based on the structural binding mechanisms of MRTX1133 identified ZINC78453217, ZINC70875226 and ZINC64890902 as potential KRASG12D inhibitors. Further, structural optimisations and biochemical testing of these compounds would assist in the discovery of effective KRASG12D inhibitors.
Muscle weakness as a secondary feature of attenuated neuronal input often leads to disability and sometimes death in patients with neurogenic neuromuscular diseases. These impaired muscle function has been observed in several diseases including amyotrophic lateral sclerosis, Charcot–Marie–Tooth, spinal muscular atrophy and Myasthenia gravis. This has spurred the search for small molecules which could activate fast skeletal muscle troponin complex as a means to increase muscle strength. Discovered small molecules have however been punctuated by off-target and side effects leading to the development of the second-generation small molecule, Reldesemtiv. In this study, we investigated the impact of Reldesemtiv binding to the fast skeletal troponin complex and the molecular determinants that condition the therapeutic prowess of Redesemtiv through computational techniques. It was revealed that Reldesemtiv binding possibly potentiates troponin C compacting characterized by reduced exposure to solvent molecules which could favor the slow release of calcium ions and the resultant sensitization of the subunit to calcium. These conformational changes were underscored by conventional and carbon hydrogen bonds, pi-alkyl, pi-sulfur and halogen interactions between Reldesemtiv the binding site residues. Arg113 (−3.96 kcal/mol), Met116 (−2.23 kcal/mol), Val114 (−1.28 kcal/mol) and Met121 (−0.63 kcal/mol) of the switch region of the inhibitory subunit were among the residues that contributed the most to the total free binding energy of Reldesemtiv highlighting their importance. These findings present useful insights which could lay the foundation for the development of fast skeletal muscle small molecule activators with high specificity and potency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.