A methodology is introduced for predicting the effective thermal conductivity of arbitrary particulate composites with interfacial thermal resistance in terms of an effective medium approach combined with the essential concept of Kapitza thermal contact resistance. Results of the present model are compared to existing models and available experimental results. The proposed approach rediscovers the existing theoretical results for simple limiting cases. The comparisons between the predicted and experimental results of particulate diamond reinforced ZnS matrix and cordierite matrix composites and the particulate SiC reinforced Al matrix composite show good agreement. Numerical calculations of these different sets of composites show very interesting predictions concerning the effects of the particle shape and size and the interfacial thermal resistance.
This critical review presents the state of the art research progress, proposes strategies to improve the conductivity of solid electrolytes, discusses the chemical and electrochemical stabilities, and uncovers future perspectives for solid state batteries.
Dramatic changes in the physical properties of composites occur when filler particles form a percolating network through the composite, particularly when the difference between the properties of the constitutive phases is large. By use of electric conductivity and dielectric properties as examples, recent studies on the physical properties of composites near percolation are reviewed. The effects of geometric factors and intrinsic properties of the fillers and the matrix, and especially of the interface between fillers and matrix, on electric and dielectric properties near percolation are discussed. Contact resistivity at the interface is less desirable for enhancing electrical conductivity. By contrast, an interface with high resistivity suppresses tunneling between adjacent fillers and leads to percolative composites with higher dielectric constant but lower dielectric loss. This review concludes with an outlook on the future possibilities and scientific challenges in the field.
Designed oligonucleotides can self-assemble into DNA nanostructures with well-defined structures and uniform sizes, which provide unprecedented opportunities for biosensing, molecular imaging, and drug delivery. In this work, we have developed functional, multivalent DNA nanostructures by appending unmethylated CpG motifs to three-dimensional DNA tetrahedra. These small-sized functional nanostructures are compact, mechanically stable, and noncytotoxic. We have demonstrated that DNA nanostructures are resistant to nuclease degradation and remain substantially intact in fetal bovine serum and in cells for at least several hours. Significantly, these functional nanostructures can noninvasively and efficiently enter macrophage-like RAW264.7 cells without the aid of transfection agents. After they are uptaken by cells, CpG motifs are recognized by the Toll-like receptor 9 (TLR9) that activates downstream pathways to induce immunostimulatory effects, producing high-level secretion of various pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-12. We also show that multivalent CpG motifs greatly enhance the immunostimulatory effect of the nanostructures. Given the high efficacy of these functional nanostructures and their noncytotoxic nature, we expect that DNA nanostructures will become a promising tool for targeted drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.