Diabetic nephropathy (DN) has become the most common secondary kidney disease causing end-stage renal disease (ESRD). Nevertheless, the underlying mechanisms responsible for DN remain largely unknown. Regulated in development and DNA damage response 1 (REDD1) is a prooxidative molecule known to contribute to diabetes mellitus and its complications. However, it has not been previously examined whether and how REDD1 can further drive renal tubular epithelial cell (RTEC) apoptosis and epithelial-to-mesenchymal transition in DN. The expression of REDD1 was elevated in the kidneys of DN patients and diabetic mice in this study. By generating the DN model in REDD1 knockout mice, we demonstrated that REDD1 deficiency significantly improved apoptosis and EMT in diabetic mice. In vitro experiments showed that REDD1 generation was induced by high glucose (HG) in HK-2 cells. Similarly, the transfection of REDD1 siRNA plasmid also suppressed HG-induced apoptosis and EMT. Furthermore, we discovered that the inhibition of REDD1 suppressed the expression of Nox4-induced HG and reactive oxygen species (ROS) synthesis in HK-2 cells. In addition, HG could induce endogenous REDD1 and TXNIP to form a powerful complex. In summary, our findings demonstrate that blocking the REDD1/TXNIP complex can prevent HG-induced apoptosis and EMT by inhibiting ROS production, highlighting REDD1 as a valuable therapeutic priority site for DN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.