The objective of the research is to design a broadband energy harvester device through the multi-beam approach and non-linear trapezoidal geometry approach. The performance of the composite piezoelectric PZT-PZN polycrystalline ceramic material is simulated using COMSOL Multiphysics, and results are compared using series configuration of a composite bimorph energy harvester which vibrates at its 1st fundamental frequency. We chose a five cantilever multibeam harvester to demonstrate that individual fundamental modes of the beams can achieve a broader frequency band and generate power. Authors also show that composite trapezoidal beam design leads to high power density broadband frequency response. The multibeam approach resulted in broader bandwidth of 18 Hz while generating a power density of 0.0913 mW/cm3 whereas the trapezoidal shape generated 2.3 – 2.5 mW/cm3 with a bandwidth of 4 to 6 Hz. Authors believe that these results could help design broadband energy harvesters to enhance power density as well as bandwidth.
We demonstrate the detailed analysis for conversion of piezoelectric properties into compliance matrix and simulate a series bimorph configuration for vibration based energy generation. Commercially available software COMSOL Multiphysics was used to apply boundary conditions for optimization of geometric parameters such as length, width and thickness of piezoelectric layer to study voltage and power characteristics of the harvester. The resulting energy harvester was found to generate 1.73 mW at 53.4 Hz across a 3MΩ load with an energy density of 13.08mJ/cm3. We also investigated feasibility of this model by comparing it with existing experimental data of known piezoelectric ceramic compositions and found good correlation between the two.
The objective of the research is to design a high power energy harvester device through a two-piece trapezoidal geometry approach. The performance of the composite two-piece trapezoidal piezoelectric PZT-PZN polycrystalline ceramic material is simulated using COMSOL Multiphysics. Results are analysed using the series configuration of a two-piece trapezoidal composite bimorph cantilever which vibrates at the first fundamental frequency. The two-piece trapezoidal composite beam designs resulted in a full-width half-maximum electric power bandwidth of 2.5 Hz while providing an electric power density of 16.81 mW/cm3 with a resistive load of 0.08 MΩ. The authors believe that these results could help design a piezoelectric energy harvester to provide local energy source which provides high electric power output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.