Modeling and understanding sea ice dynamics in marginal ice zones rely on measurements of sea ice. Lagrangian observations of ice floes provide insight into the dynamics of sea ice, the ocean, and the atmosphere. However, optical satellite images are susceptible to atmospheric noise, leading to gaps in the retrieved time series of floe positions. This paper presents an efficient and statistically accurate nonlinear dynamical interpolation framework for recovering missing floe observations. It exploits a balanced physics‐based and data‐driven construction to address the challenges posed by the high‐dimensional and nonlinear nature of the coupled atmosphere‐ice‐ocean system, where effective reduced‐order stochastic models, nonlinear data assimilation, and simultaneous parameter estimation are systematically integrated. The new method succeeds in recovering the locations, curvatures, angular displacements, and the associated strong non‐Gaussian distributions of the missing floes in the Beaufort Sea. It also accurately estimates floe thickness and recovers the unobserved underlying ocean field with an appropriate uncertainty quantification, advancing our understanding of Arctic climate.
Regime switching is ubiquitous in many complex dynamical systems with multiscale features, chaotic behavior, and extreme events. In this paper, a causation entropy boosting (CEBoosting) strategy is developed to facilitate the detection of regime switching and the discovery of the dynamics associated with the new regime via online model identification. The causation entropy, which can be efficiently calculated, provides a logic value of each candidate function in a pre-determined library. The reversal of one or a few such causation entropy indicators associated with the model calibrated for the current regime implies the detection of regime switching. Despite the short length of each batch formed by the sequential data, the accumulated value of causation entropy corresponding to a sequence of data batches leads to a robust indicator. With the detected rectification of the model structure, the subsequent parameter estimation becomes a quadratic optimization problem, which is solved using closed analytic formulas. Using the Lorenz 96 model, it is shown that the causation entropy indicator can be efficiently calculated, and the method applies to moderately large dimensional systems. The CEBoosting algorithm is also adaptive to the situation with partial observations. It is shown via a stochastic parameterized model that the CEBoosting strategy can be combined with data assimilation to identify regime switching triggered by the unobserved latent processes. In addition, the CEBoosting method is applied to a nonlinear paradigm model for topographic mean flow interaction, demonstrating the online detection of regime switching in the presence of strong intermittency and extreme events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.