The past decades have witnessed rapid urbanization around the world. This is particularly evident in Zhuhai City, given its status as one of the earliest special economic zones in China. After experiencing rapid urbanization for decades, the level of ecosystem health (ESH) in Zhuhai City has become a focus of attention. Assessments of urban ESH and spatial correlations between urbanization and ESH not only reveal the states of urban ecosystems and the extent to which urbanization affected these ecosystems, but also provide new insights into sustainable eco-environmental planning and resource management. In this study, we assessed the ESH of Zhuhai City using a selected set of natural, social and economic indicators. The data used include Landsat Thematic Mapper images and socio-economic data of 1999, 2005, 2009 and 2013. The results showed that the overall ESH value and ecosystem service function have been on the decline while Zhuhai City has continued to become more urbanized. The total ESH health level trended downward and the area ratio of weak and relatively weak health level increased significantly, while the areas of well and relatively well healthy state decreased since 1999. The spatial correlation analysis shows a distinct negative correlation between urbanization and ESH. The degree of negative correlation shows an upward trend with the processes of urban sprawl. The analysis results reveal the impact of urbanization on urban ESH and provide useful information for planners and environment managers to take measures to improve the health conditions of urban ecosystems.
Urban forests can provide the necessary ecosystem services for their residents and play an important part in improving the urban environment. Forest landscape connectivity is a vital indicator reflecting the quality of the ecological environment and ecological functions. Detecting changes in landscape connectivity is, therefore, an important step for providing sound scientific evidence for the better urban planning. Using remote sensing images of a study area in Zhuhai City in 1999, 2005, 2009 and 2013, the dynamic forest landscape connectivity of Zhuhai city can be evaluated based on a graph-theoretic approach. The aims of our study were to discover and interpret the effect of rapid urbanization on forest landscape connectivity. The construction of ecological corridors helps us specifically compare the landscape connectivity of three parts of urban forests. On the basis of functional landscape metrics, the correlation of these metrics and patch area was discussed in order to comprehensively identify the key patches. The analysis showed that the total areas of forestlands reduced from 1999 to 2009 and then increased from 2009 to 2013, and the same trend was found in overall forest landscape connectivity. To improve the overall landscape connectivity, construct urban ecological network and appropriately protect biodiversity in the future, the existing important patches with large areas or key positions should be well protected. This study revealed that urbanization reduced the area of key patches and consequently reduced the forest landscape connectivity, which increased while the patch areas increased due to the environmental protection policy. Functional connectivity indicators could provide more comprehensive information in the development of environmental protection strategies.
Volunteered Geographical Information (VGI) and social media can provide information about real-time perceptions, attitudes and behaviours in urban green space (UGS). This paper reviews the use of VGI and social media data in research examining UGS. The current state of the art is described through the analysis of 177 papers to (1) summarise the characteristics and usage of data from different platforms, (2) provide an overview of the research topics using such data sources, and (3) characterise the research approaches based on data pre-processing, data quality assessment and improvement, data analysis and modelling. A number of important limitations and priorities for future research are identified. The limitations include issues of data acquisition and representativeness, data quality, as well as differences across social media platforms in different study areas such as urban and rural areas. The research priorities include a focus on investigating factors related to physical activities in UGS areas, urban park use and accessibility, the use of data from multiple sources and, where appropriate, making more effective use of personal information. In addition, analysis approaches can be extended to examine the network suggested by social media posts that are shared, re-posted or reacted to and by being combined with textual, image and geographical data to extract more representative information for UGS analysis.
The karst region of Southwest China is one of the largest continuous karst areas in the world, and the ecosystem in the karst region is extremely fragile. The city of Liupanshui, a typical karst area in southwestern China, has provided the main energy and raw materials during China’s rapid urbanization in the past few decades. With the continuous deterioration of the environment in Liupanshui and from the viewpoint of sustainable development strategies, research on ecosystem health (ESH) and the assessments of correlations between urbanization and ESH plays an important role in regional sustainable eco-environmental development. Therefore, the impact of urbanization on the ecosystem health of the study area was discussed in this study using a series of remote sensing images and socio-economic data from 1990 to 2015. Studies showed that Liupanshui is undergoing rapid urbanization, and the growth of urbanized land reached a peak between 2010 and 2015. From 1990 to 2015, the level of ESH in Liupanshui trended downward and then increased. During 2000 to 2010, due to the policy of returning farmland to grassland and forestland, the substantial increase in woodland and grassland and the management policy of mining areas have caused a turn in ESH. Although the value of ecosystem health in 2010–2015 increased, the process of urbanization is rapid, so we should pay more attention to the trend in future ecosystem health changes. The findings revealed that urbanization significantly negatively affects the ecosystem health of Liupanshui, and mining has the greatest impact. Therefore, in future urban development, strengthening the management of resource extraction and the supervision of environmental protection, continuing to return farmland to grassland and forestry, and controlling rocky desertification can improve the health of the urban ecosystem in the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.