We present a simple, direct method to prepare monohydroxylated cucurbit[7]uril (CB7-OH) through the direct oxidation of its precursor host, cucurbit[7]uril (CB7). Although the conversion takes place in low yield (14%), the isolation of CB7-OH from the reaction mixture is straightforward, and the unreacted CB7 can be easily recovered. ITC measurements with several selected guests confirmed that CB7-OH binds all of them in aqueous solution with similar, albeit slightly lower, binding affinities than those observed with the unmodified CB7 host. ESI mass spectrometric competition experiments are consistent with the ITC measurements. A variety of spectroscopic and voltammetric measurements also verify that the CB7-OH complexes exhibit properties essentially identical to those of the CB7 complexes. DFT computational data also confirm the similar thermodynamic stabilities and structures of the CB7-OH and CB7 inclusion complexes. Finally, the high thermodynamic stability of the CB7-OH complexes was used to improve on the extraction efficiency of stir bar sorptive extraction methods after suitable modification of the active coating with CB7-OH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.