Background The pattern of changes in the cervical spine and the spinal cord and their dynamic characteristics in patients with cervical spinal cord injury without fracture and dislocation remain unclear. This study aimed to evaluate the dynamic changes in the cervical spine and spinal cord from C2/3 to C7/T1 in different positions by using kinematic magnetic resonance imaging in patients with cervical spinal cord injury without fracture and dislocation. This study was approved by the ethics committee of Yuebei People's Hospital. Methods Using median sagittal T2-weighted images for 16 patients with cervical spinal cord injury without fracture and dislocation who underwent cervical kinematic MRI, the anterior space available for the cord, spinal cord diameter, posterior space available for the cord from C2/3 to C7/T1, and Muhle’s grade were determined. The spinal canal diameter was calculated by adding the anterior space available for the cord, spinal cord diameter, and posterior space available for the cord. Results The anterior space available for the cord, posterior space available for the cord, and spinal canal diameters at C2/3 and C7/T1 were significantly higher than those from C3/4 to C6/7. Muhle’s grades at C2/3 and C7/T1 were significantly lower than those at the other levels. Spinal canal diameter was lower in extension than in the neutral and flexion positions. In the operated segments, significantly lesser space was available for the cord (anterior space available for the cord + posterior space available for the cord), and the spinal cord diameter/spinal canal diameter ratio was higher than those in the C2/3, C7/T1, and non-operated segments. Conclusion Kinematic MRI demonstrated dynamic pathoanatomical changes, such as canal stenosis in different positions, in patients with cervical spinal cord injury without fracture and dislocation. The injured segment had a small canal diameter, high Muhle’s grade, low space available for the cord, and high spinal cord diameter/spinal canal diameter ratio.
Background The pattern of changes in the cervical spine and the spinal cord and their dynamic characteristics in patients with cervical spinal cord injury without fracture and dislocation remain unclear. This study aimed to evaluate the dynamic changes in the cervical spine and spinal cord from C2/3 to C7/T1 in different positions using kinematic magnetic resonance imaging in patients with cervical spinal cord injury without fracture and dislocation. This study was approved by the ethics committee of Yuebei People's Hospital, Guangdong Medical University. Methods Using median sagittal T2-weighted images for 16 patients with cervical spinal cord injury without fracture and dislocation who underwent cervical kinematic MRI, the anterior space available for the cord, spinal cord diameter, posterior space available for the cord from C2/3 to C7/T1, and Muhle’s grade were determined. The spinal canal diameter was calculated by adding the anterior space available for the cord, spinal cord diameter, and posterior space available for the cord. Results Anterior space available for the cord, posterior space available for the cord, and spinal canal diameter at C2/3 and C7/T1 were significantly higher than those from C3/4 to C6/7. Muhle’s grades at C2/3 and C7/T1 were significantly lower than those at the other levels. Spinal canal diameter was lower in extension than in the neutral and flexion positions. In the operated segments, significantly lesser space was available for the cord (anterior space available for the cord + posterior space available for the cord) and the spinal cord diameter/spinal canal diameter ratio was higher compared with C2/3, C7/T1, and non-operated segments. Conclusion Kinematic MRI demonstrated dynamic pathoanatomical changes, such as canal stenosis in different positions, in patients with cervical spinal cord injury without fracture and dislocation. The injured segment had a small canal diameter, high Muhle’s grade, low space available for the cord, and high spinal cord diameter/spinal canal diameter ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.